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The Detector Construction
n User class which describes the geometry must inherit 

from G4VUserDetectorConstruction and registered 
in the Run Manager

// ...
class G4VUserDetectorConstruction
{
  public:
    G4VUserDetectorConstruction();
    virtual ~G4VUserDetectorConstruction();

  public:
    virtual G4VPhysicalVolume* Construct() = 0;
    virtual void ConstructSDandField();

// ...
}

n Define the geometry of 
your model
n All materials
n All volumes & 

placements
n (Optionally) add fields
n (Optionally) define 

volumes for read-out 
(sensitive detectors)



Part I: Units 



Note: Geant4 basic types

n Aliases for the primitive data types to provide cross-
platform compatibility:
n G4double, G4float, G4int, G4bool, G4long

n Enhanced version of string called G4String
n inherits from std::string ⇒ all methods and operators
n several additional methods

n G4ThreeVector is a three-component class corresponding to 
a real physics vector (examples later)

Please, use these types for best compatibility (e.g. G4int instead 
of int, etc., G4ThreeVector when it makes sense etc.)

G4ThreeVector dimensions {1.0, 2.0, 3.0 };



Units in Geant4
n Don’t use default units!

n When specifying dimensions, always multiply by an appropriate unit:
     

n Most common units are defined in CLHEP library (included in Geant4):

n  You can define new units
n Output data in terms of a specific unit:

n divide a value by the unit:

► G4SystemOfUnits.hh

► CLHEP/SystemOfUnits.hh

G4double width = 12.5 * m;
G4double density = 2.7 * g/cm3;

G4cout << dE / MeV << " (MeV)" << G4endl;



System of units in Geant4

n All other units derived from the basic ones.

n Useful feature: Geant4 can select the most appropriate unit 
to use
n specify the category for the data (Length, Time, Energy, etc…):

  StepSize will be printed in km, m, mm or … fermi, depending on 
its actual value

millimeter (mm)

nanosecond (ns)

megaelectronvolt (MeV)

unit charge (eplus)

kelvin candela

radian

steradian

G4cout << G4BestUnit(StepSize, "Length");



Defining new units 
n New units can be defined directly as constants, or (suggested 

way) via G4UnitDefinition
n G4UnitDefinition ( “name”, “symbol”, 
“category”, value )

n Example (mass thickness):
n G4UnitDefinition (“grammpercm2”, “g/cm2”, 
“MassThickness”, g/cm2);

n The new category “MassThickness” will be registered in the 
kernel in G4UnitsTable

n To print the list of units:
n From the code
     G4UnitDefinition::PrintUnitsTable();
n At run-time, as UI command:

 Idle> /units/list



Part II: Materials 



Materials
n Different levels of material description:

n isotopes à G4Isotope
n elements à G4Element
n molecules à G4Material
n compounds and mixtures à G4Material

n Attributes associated:
n Density (mandatory)
n Temperature, Pressure, State (gas, liquid, …)



Materials
n G4Isotope and G4Element describe properties of 

the atoms:
n Atomic number, number of nucleons, mass of a mole, 

shell energies, cross-sections per atoms, etc…
n G4Material describes the macroscopic 

properties of the matter:
n temperature, pressure, state, density
n Radiation length, absorption length, etc…

n G4Material is used by tracking, geometry and 
physics in Geant4
n Material properties computed from elemental

properties à assuption of linear combination



Elements and isotopes
n If you need an element made by a non-natural 

isotopic composition (e.g. enrGe) 
n Build isotopes

n … and assemble into elements

G4Isotope(const G4String& name,
                 G4int     z,    // atomic number
                 G4int     n,    // number of nucleons
                 G4double  a );  // mass of mole

G4Element::AddIsotope(G4Isotope* iso,  // isotope
             G4double relAbund); // fraction of nuclei

G4Element (const G4String& name,
           const G4String& symbol, // element symbol
                 G4int     nIso ); // n. of isotopes



… for instance
n Build enrU

n For element with natural isotopic composition, 
definition is easier

G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235, 
a=235.01*g/mole);

G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238, 
a=238.03*g/mole);

G4Element* elU = new G4Element(name="enriched Uranium", symbol="U", 
ncomponents=2);

elU->AddIsotope(U5, abundance= 90.*perCent);
elU->AddIsotope(U8, abundance= 10.*perCent);

a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);
G4cout << elO << G4endl; //printout of element info

Do not forget unit (g/mole)

Do not forget unit (g/mole)



Elements and molecules
n Single-element materials

n Molecule (composition by number of atoms) 

G4double z, a, density;
density = 1.390*g/cm3;
a = 39.95*g/mole; 
G4Material* lAr = new G4Material("liquidAr", z=18, a, density);

a = 1.01*g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a);

a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);

density = 1.000*g/cm3;
G4Material* H2O = new G4Material("Water", density, ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);



Materials: compounds
n Composition by fraction of mass
a = 14.01*g/mole;
G4Element* elN  = new G4Element(name="Nitrogen",symbol="N", z= 7., a);
a = 16.00*g/mole;
G4Element* elO  =  new G4Element(name="Oxygen",symbol="O", z= 8., a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);



Materials: mixtures

n Composition of mixtures
G4Element* elC  = …;   // define “carbon” element
G4Material* SiO2 = …;  // define “quartz” material
G4Material* H2O = …;   // define “water” material
density = 0.200*g/cm3;

G4Material* aerogel = new G4Material("Aerogel",
density, ncomponents=3);

aerogel->AddMaterial(SiO2,fractionmass=62.5*perCent);
aerogel->AddMaterial(H2O, fractionmass=37.4*perCent);
aerogel->AddElement (elC, fractionmass= 0.1*perCent);



Example: a gas

n It may be necessary to specify temperature and 
pressure
n (dE/dx computation affected)

G4double density = 27. * mg/cm3;
G4double temperature = 325. * kelvin;
G4double pressure = 50. * atmosphere;

G4Material* CO2 = new G4Material("CO2Gas", density,
ncomponents=2, kStateGas, temperature, pressure);

CO2->AddElement(C, natoms = 1);
CO2->AddElement(O, natoms = 2);



"Vacuum"
n Absolute vacuum does not exist: 

n Model it as a gas at very low density!
n Cannot define materials composed of multiple 

elements through Z or A, or with ρ=0
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;

G4Material* Vacuum = new G4Material("interGalactic",
atomicNumber, massOfMole, density,
kStateGas, temperature, pressure);



The NIST database
n All elements and many commonly-used materials

available in Geant4 through the NIST database
n No need to predefine elements and materials 
n Retrieve materials from NIST manager:

n UI commands

G4NistManager* manager = G4NistManager::Instance();
G4Material* H2O = manager->FindOrBuildMaterial("G4_WATER");
G4Material* vacuum = manager->FindOrBuildMaterial("G4_Galactic");

/material/nist/listMaterials

/material/nist/printElement ß print defined elements

ß print defined materials



The NIST database: elements
n NIST database for elements and 

materials is imported in Geant4
n http://physics.nist.gov/Phys

RefData
n UI commands specific for handling 

materials
n The best accuracy for the most 

relevant parameters guaranteed:
n Density
n Mean excitation potential
n Element composition
n Isotope composition
n Various corrections

• Natural isotope compositions 
• More than 3000 isotope masses

http://geant4.cern.ch/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/apas08.html



NIST materials

n NIST Elements:
n H à Cf ( Z = 1 à 98 )

n  NIST compounds:
n  e.g. “G4_ADIPOSE_TISSUE_IRCP”

n  HEP and Nuclear materials:
n e.g. Liquid Ar, PbWO

n Possible to build mixtures of NIST and 
user-defined materials



Part III: Geometry



Describe your detector
n A detector geometry is made of a number of volumes
n The largest volume is called World volume

n It must contain all other volumes
n Derive your own concrete class from G4VUserDetectorConstruction 

abstract base class
n Implementing the virtual methods Construct()(pure virtual) and 

ConstructSDandFields():
n Define shapes/solids required to describe the geometry
n Construct all necessary materials
n Construct and place volumes of your detector geometry
n (Define "sensitivity" properties associated to volumes)
n (Associate magnetic field to detector regions)
n (Define visualization attributes for the detector elements)



Geometry: implementation 
basics

n Implement a class inheriting from the abstract 
base class G4VUserDetectorConstruction:

n Create an instance in the main program:

class MyDetector : public G4VUserDetectorConstruction {
public:
    virtual G4VPhysicalVolume* Construct(); // required

    virtual void ConstructSDAndField(); // optional
    // ... 
};

MyDetector* detector = new MyDetector();
runManager->SetUserInitialization(detector);     

n Note: Split the implementation into more classes and methods! (good 
programming practice)

n Note2: you should not delete the MyDetector instance! Run manager does 
that automatically.



G4VUserDetectorConstruction

n Method Construct()
n Define materials
n Define solids and volumes of the geometry
n Build the tree hierarchy of volumes
n Define visualization attributes
n Return the world physical volume!

n Method ConstructSDAndField() 
n Assign magnetic field to volumes / regions
n Define sensitive detectors and assign them to 

volumes
► G4VUserDetectorConstruction.hh

MT



Three conceptual layers
n G4VSolid 

n Shape, size
n G4LogicalVolume 

n Hierarchy of volumes, material, sensitivity, magnetic field 
n G4VPhysicalVolume 

n Position, rotation. The same logical volume can be placed many times 
(repeated modules)



Define detector geometry

n Basic strategy Step 1  
Create the   
geom.  object:  
box

Solid: shape and size.

G4VSolid* pBoxSolid =
  new G4Box(“aBoxSolid”,
        1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =

 new G4LogicalVolume( pBoxSolid, 

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

   G4VPhysicalVolume* aBoxPhys =

  new G4PVPlacement(pRotation,

  G4ThreeVector(posX, posY, posZ), 

pBoxLog,“aBoxPhys”, pMotherLog, 0, copyNo);



Define detector geometry
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Assign properties
to object : material 

Logical volume : + material, sensitivity, etc.



Define detector geometry

n Basic strategy
G4VSolid* pBoxSolid =
  new G4Box(“aBoxSolid”,
        1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =

 new G4LogicalVolume( pBoxSolid, 

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

   G4VPhysicalVolume* aBoxPhys =
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Step 1  
Create the   
geom.  object:  
box

Step 2 
Assign properties
to object : material 

Step 3
Place it in the coordinate system of 
mother volume

Physical volume : + rotation and position



Solids
n CSG (Constructed Solid Geometry) 

solids
n G4Box, G4Tubs, G4Cons, G4Trd, …
n Analogous to simple GEANT3 CSG solids

n Specific solids (CSG like)
n G4Polycone, G4Polyhedra, G4Hype, …
n G4TwistedTubs, G4TwistedTrap, …

n BREP (Boundary REPresented) solids
n G4BREPSolidPolycone, 

G4BSplineSurface, …
n Any order surface

n Boolean solids
n G4UnionSolid, G4SubtractionSolid, …



CGS: G4Box
G4Box(const G4String& pname,  // name
             G4double  pX, // half-length in X
             G4double  pY, // half-length in Y
             G4double  pZ, // half-length in Z);

Note the half-length!



CGS: G4Tubs & G4Cons
G4Tubs(const G4String& pname,  // name
             G4double  pRmin,  // inner radius (0)
             G4double  pRmax,  // outer radius
             G4double  pDz,    // Z half! length
             G4double  pSphi,  // starting Phi (0)
             G4double  pDphi); // segment angle (twopi)

G4Cons(const G4String& pname,  // name
             G4double  pRmin1, // inner radius -pDz
             G4double  pRmax1, // outer radius -pDz
             G4double  pRmin2, // inner radius +pDz
             G4double  pRmax2, // outer radius +pDz
             G4double  pDz,    // Z half length
             G4double  pSphi,  // starting Phi
             G4double  pDphi); // segment angle



Other CGS solids

G4Trd
G4Sphere

G4Torus

Check Section 4.1.2 of 
Geant4 Application 

Developers Guide for all 
available shapes

G4Orb
(full solid 
sphere)

G4Para
(parallelepiped)

G4Trap



Boolean solids
n Solids can be combined using boolean 

operations:
n G4UnionSolid, G4SubtractionSolid, 
G4IntersectionSolid

n Requires: 2 solids, 1 boolean operation, and an 
(optional) transformation for the 2nd solid

n 2nd solid is positioned relative to the coordinate 
system of the 1st solid

n Result of boolean operation becomes a solid à 
re-usable in a boolean operation

n Solids to be combined can be either CSG or 
other Boolean solids

n Note: tracking cost for the navigation in a 
complex Boolean solid is proportional to the 
number of constituent CSG solids

G4UnionSolid

G4SubtractionSolid

G4IntersectionSolid



Boolean solids – an example
G4VSolid* box = new G4Box("Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder =

new G4Tubs("Cylinder",0.,50.*cm,50.*cm,0.,twopi);

G4VSolid* union =
new G4UnionSolid("Box+Cylinder", box, cylinder); 

G4VSolid* subtract =
new G4SubtractionSolid("Box-Cylinder", box, cylinder, 

   0, G4ThreeVector(30.*cm,0.,0.)); 

G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4VSolid* intersect =

new G4IntersectionSolid("Box&&Cylinder",   
    box, cylinder, rm, G4ThreeVector(0.,0.,0.)); 



Boolean solid - example



Logical volumes
n Contains all information of volume except position:

n Shape and dimension (G4VSolid)
n Material, sensitivity, visualization attributes
n Hierarchy of daughter volumes
n Magnetic field, User limits

n Physical volumes of same type can share a logical volume.
n The pointers to solid and material must be not nullptr

G4LogicalVolume(G4VSolid* pSolid,
G4Material* pMaterial,

                const G4String& name,
G4FieldManager* pFieldMgr=0,

                G4VSensitiveDetector* pSDetector=0,
                G4UserLimits* pULimits=0,
                G4bool optimise=true);

optional



Physical volumes
n A physical volume is a positioned 

instance of a logical volume inside another 
logical volume (the mother volume)

n Placement (G4PVPlacement)
n it is one positioned volume

n Repeated: a volume placed many times
n can represent any number of volumes
n reduces use of memory
n G4PVReplica (= simple repetition)
n G4PVParameterised (= more complex 

pattern)
n G4PVDivision repeated

placement



Geometry hierarchy
n A volume is placed in its mother volume

n Position and rotation of the daughter volume is described with 
respect to the local coordinate system of the mother volume

n The origin of the mother's local coordinate system is at the 
center of the mother volume

n Daughter volumes cannot protrude from the mother volume
n Daughter volumes cannot overlap

n The logical volume of mother knows the daughter volumes it 
contains
n It is uniquely defined to be their mother volume



Geometry hierarchy
§ One logical volume can be placed more than 

once. One or more volumes can be placed in a 
mother volume

§ The mother-daughter relationship is an 
information of G4LogicalVolume
§ If the mother volume is placed more than once, 

all daughters by definition appear in each placed 
physical volume

§ The world volume must be a unique physical 
volume which fully contains all other volumes 
(root volume of the hierarchy)
§ The world volume defines the global coordinate 

system. The origin of the global coordinate 
system is at the center of the world volume

§ Position of a track is given with respect to the 
global coordinate system



G4PVPlacement

n Single volume positioned relatively to the mother volume
n In a frame rotated and translated relative to the coordinate 

system of the mother volume
n A few variants available:

n Using G4Transform3D to represent the direct rotation and 
translation of the solid instead of the frame (alternative 
constructor)

n specifying the mother volume as a pointer to its physical 
volume instead of its logical volume

n Four constructors available
n logical OR physical volume as mother
n active OR passive transformation of the coordinate 

system



G4PVPlacement
Rotation of mother frame …

Mother volume

rotation

tran
slati

on i
n m

othe
r 

fram
e

Mother volume

translatio
n in mother 

frame

Single volume positioned relatively to the mother volume
(passive transformation)

G4PVPlacement(G4RotationMatrix* pRot,      // rotation of mother frame
     const G4ThreeVector& tlate, // position in mother frame

G4LogicalVolume* pCurrentLogical,
 const G4String& pName,

G4LogicalVolume* pMotherLogical,
G4bool pMany,            // not used. Set it to false…
G4int pCopyNo,           // unique arbitrary index

             G4bool pSurfChk=false ); // optional overlap check



G4PVPlacement
Rotation in mother frame …

rotation

Mother volume

translation
 in mother 

frame

G4PVPlacement(G4Transform3D(
G4RotationMatrix &pRot, // rotation in daughter frame

               const G4ThreeVector &tlate),   // position in mother frame
G4LogicalVolume *pDaughterLogical,

              const G4String &pName, 
              G4LogicalVolume *pMotherLogical,
              G4bool pMany,           // not used, set it to false…
              G4int pCopyNo,          // unique arbitrary integer
              G4bool pSurfChk=false ); // optional overlap check

Single volume positioned relatively to the mother 
volume (active transformation)



Geometry problems
n Geant4 does not allow for malformed geometries, neither 

protruding (daughter/mother) not overlapping (sisters)
n The behavior of navigation is unpredictable for such cases

n The problem of detecting overlaps between volumes is 
bounded by the complexity of the solid models description

n Utilities are provided for detecting wrong positioning
n Optional checks at construction
n Kernel run-time commands
n Graphical tools (DAVID)

protruding overlapping



Tools for geometry check
§ Constructors of G4PVPlacement and G4PVParameterised have an optional 

argument “pSurfChk”

§ If this flag is true, overlap check is done at the construction
§ Some number of points are randomly sampled on the surface of creating 

volume
§ This check requires lots of CPU time, but it is worth to try at least once 
§ Built-in run-time commands to activate verification tests for the user geometry:

§ /geometry/test/run  or  /geometry/test/grid_test
§ start verification of geometry for overlapping regions based on a standard 

grid setup, limited to the first depth level 
§ /geometry/test/recursive_test for all depth levels (CPU intesive!)

G4PVPlacement(G4RotationMatrix* pRot,
const G4ThreeVector &tlate, 
G4LogicalVolume *pDaughterLogical, 
const G4String &pName, 
G4LogicalVolume *pMotherLogical, 
G4bool pMany, G4int pCopyNo, 
G4bool pSurfChk=false); 



Regions
n A region is a sub-set of the geometry
n It may have its specific

n Production thresholds (cuts)
n User limits

n Artificial limits affecting to the tracking, e.g. max step 
length, max number of steps, min kinetic energy left, etc.

n Field manager
n World logical volume is recognized as the default 

region. User is not allowed to define a region to 
the world logical volume



Hands on…. 


