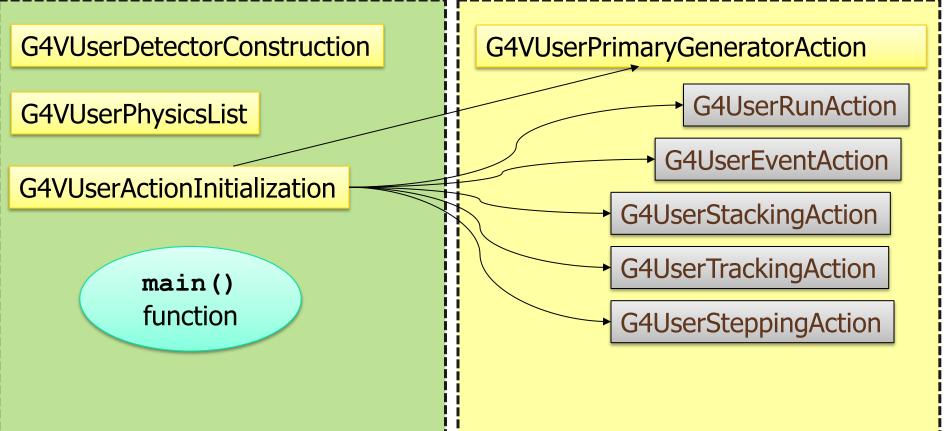
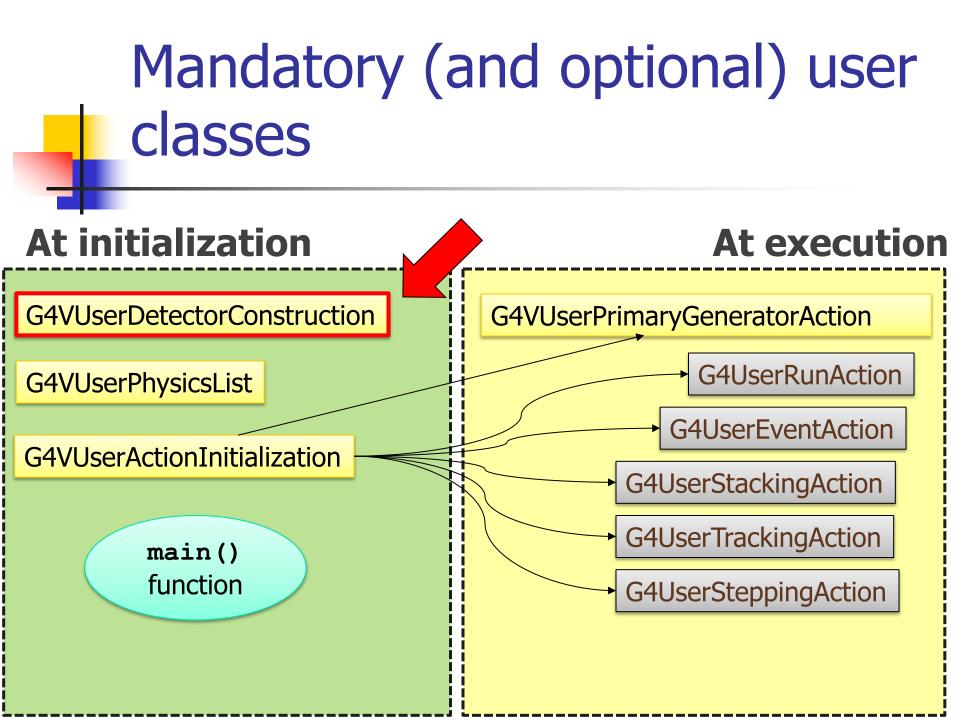


A lot of material by J. Pipek Pablo Cirrone

INFN – Laboratori Nazionali del Sud


Pablo.cirrone@lns.infn.it


Geant4 Course at the XXI Seminar on software for nuclear, subnuclear and applied physics Alghero, June 9th- 14th, 2024

Mandatory (and optional) user classes

At initialization

At execution

The Detector Construction

- User class which describes the geometry must inherit from G4VUserDetectorConstruction and registered in the Run Manager
- Define the geometry of your model
 - All materials
 - All volumes & placements
- (Optionally) add fields
- (Optionally) define volumes for read-out (sensitive detectors)

```
// ...
class G4VUserDetectorConstruction
{
    public:
      G4VUserDetectorConstruction();
    virtual ~G4VUserDetectorConstruction();

    public:
      virtual G4VPhysicalVolume* Construct() = 0;
      virtual void ConstructSDandField();
      // ...
}
Remember!
```

Part I: Units

Note: Geant4 basic types

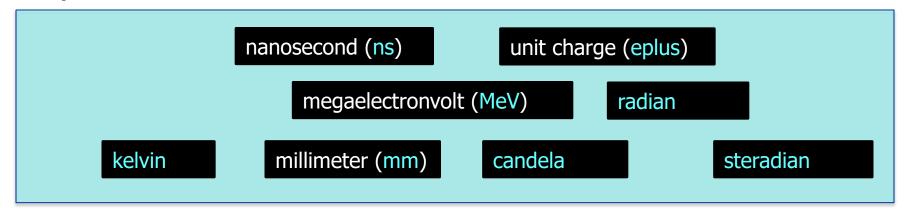
- Aliases for the **primitive data types** to provide crossplatform compatibility:
 - G4double, G4float, G4int, G4bool, G4long
- Enhanced version of string called G4String
 - inherits from std::string ⇒ all methods and operators
 - several additional methods
- G4ThreeVector is a three-component class corresponding to a real physics vector (examples later)

G4ThreeVector dimensions {1.0, 2.0, 3.0 };

Please, use these types for best compatibility (e.g. G4int instead of int, etc., G4ThreeVector when it makes sense etc.)

Units in Geant4

Don't use default units!


When specifying dimensions, always **multiply** by an appropriate unit:

```
G4double width = 12.5 * m;
G4double density = 2.7 * g/cm3;
```

- Most common units are defined in **CLHEP** library (included in Geant4):
 - ► G4SystemOfUnits.hh
 - CLHEP/SystemOfUnits.hh
- You can define **new units**
- Output data in terms of a specific unit:
 - divide a value by the unit:

G4cout << dE / MeV << " (MeV) " << G4endl;

System of units in Geant4

- All other units derived from the basic ones.
- Useful feature: Geant4 can select the most appropriate unit to use
 - specify the category for the data (Length, Time, Energy, etc...):

G4cout << G4BestUnit(StepSize, "Length");

StepSize will be printed in km, m, mm or ... fermi, depending on its actual value

Defining new units

- New units can be defined directly as constants, or (suggested way) via G4UnitDefinition
 - G4UnitDefinition ("name", "symbol", "category", value)
- Example (mass thickness):
 - G4UnitDefinition ("grammpercm2", "g/cm2", "MassThickness", g/cm2);
 - The new category "MassThickness" will be registered in the kernel in G4UnitsTable
- To print the list of units:
 - From the code
 - G4UnitDefinition::PrintUnitsTable();
 - At run-time, as UI command: Idle> /units/list

Part II: Materials

Materials

Different levels of material description:

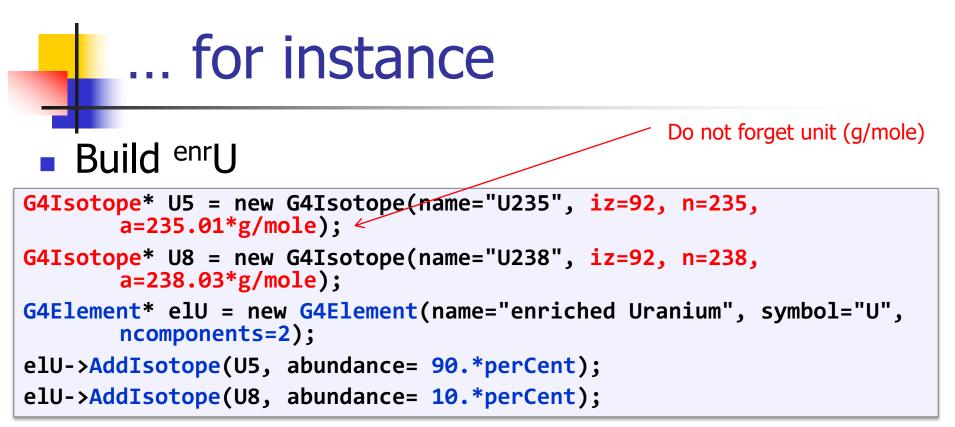
- isotopes \rightarrow G4Isotope
- elements \rightarrow G4Element
- molecules \rightarrow G4Material
- compounds and mixtures \rightarrow G4Material
- Attributes associated:
 - Density (mandatory)
 - Temperature, Pressure, State (gas, liquid, ...)

Materials

- G4Isotope and G4Element describe properties of the atoms:
 - Atomic number, number of nucleons, mass of a mole, shell energies, cross-sections per atoms, etc...
- G4Material describes the macroscopic properties of the matter:
 - temperature, pressure, state, density
 - Radiation length, absorption length, etc...
- G4Material is used by tracking, geometry and physics in Geant4
 - Material properties computed from elemental properties → assuption of linear combination

Elements and isotopes

 If you need an element made by a non-natural isotopic composition (e.g. ^{enr}Ge)


Build isotopes

G4Isotope (const	G4String&	name,	
	G4int	Z,	// atomic number
	G4int	n,	<pre>// number of nucleons</pre>
	G4double	a);	// mass of mole

and assemble into elements

G4int nIso); // n	lement symbol . of isotopes

G4Element::AddIsotope(G4Isotope* iso, // isotope G4double relAbund); // fraction of nuclei

For element with *natural isotopic composition*, definition is easier

a = 16.00*g/mole; G4Element* el0 = new G4Element("Oxygen", symbol="0", z=8., a); G4cout << el0 << G4endl; //printout of element info</pre>

Elements and molecules

Single-element materials

```
G4double z, a, density;
density = 1.390*g/cm3;
a = 39.95*g/mole;
G4Material* lAr = new G4Material("liquidAr", z=18, a, density);
```

Molecule (composition by *number of atoms*)

```
a = 1.01*g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);
density = 1.000*g/cm3;
G4Material* H2O = new G4Material("Water", density, ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

Materials: compounds

Composition by fraction of mass

```
a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N", z= 7., a);
a = 16.00*g/mole;
G4Element* el0 = new G4Element(name="Oxygen",symbol="0", z= 8., a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(el0, 30.0*perCent);
```

Materials: mixtures

Composition of mixtures

Example: a gas

- It may be necessary to specify temperature and pressure
 - (dE/dx computation affected)

"Vacuum"

Absolute vacuum does not exist:

- Model it as a gas at very low density!
- Cannot define materials composed of multiple elements through Z or A, or with $\rho=0$

```
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum = new G4Material("interGalactic",
atomicNumber, massOfMole, density,
kStateGas, temperature, pressure);
```

The NIST database

- All elements and many commonly-used materials available in Geant4 through the NIST database
- No need to predefine elements and materials
- Retrieve materials from NIST manager:

G4NistManager* manager = G4NistManager::Instance(); G4Material* H2O = manager->FindOrBuildMaterial("G4_WATER"); G4Material* vacuum = manager->FindOrBuildMaterial("G4_Galactic");

• UI commands

/material/nist/printElement

← print defined elements

/material/nist/listMaterials

← print defined materials

The NIST database: elements

- NIST database for elements and materials is imported in Geant4
 - http://physics.nist.gov/Phys
 RefData
- UI commands specific for handling materials
- The best accuracy for the most relevant parameters guaranteed:
 - Density
 - Mean excitation potential
 - Element composition
 - Isotope composition
 - Various corrections

Z	А	m	error	(%)	A _{eff}
14	Si 22	22.03453	(22)	28	.0855(3)
	23	23.02552	(21)		
	24	24.011546	(21)		
	25	25.004107	(11)		
	26	25.992330	(3)		
	27	26.986704	76 (17)		
	28	27.976926	5327 (20)	92.2297 (7)
	29	28.976494	- (-)	4.6832 (5	5)
	30	29.973770	22 (5)	3.0872 (5	5)
	31	30.975363	(-)		
	32	31.974148	· · · ·		
		32.978001	(17)		
	34	33.978576	$\chi = -\gamma$		
	35	34.984580	· · · ·		
	36	35.98669	(11)		
	37	36.99300	(13)		
	38	37.99598	(29)		
	39	39.00230	(43)		
	40	40.00580	(54)		
	41	41.01270	(64)		
	42	42.01610	(75)		

- Natural isotope compositions
- More than 3000 isotope masses

http://geant4.cern.ch/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/apas08.html

NIST materials

### Elementary Materials from the NIST Data						
Z Name ChFormula density(g/cm^3) I(eV)						
1 G4_H H_2 2 G4_He 3 G4_Li 4 G4_Be 5 G4_B 6 G4_C 7 G4_N N_2 8 G4_O O_2 9 G4_F 10 G4_Ne 11 G4_Na	8.3748e-05 0.000166322 0.534 1.848 2.37 2 0.0011652 0.00133151 0.00158029 0.000838505 0.971	19.2 41.8 40 63.7 76 81 82 95 115 137 149				

- NIST Elements:
 - $H \rightarrow Cf (Z = 1 \rightarrow 98)$
- NIST compounds:
 - e.g. "G4_ADIPOSE_TISSUE_IRCP"
- HEP and Nuclear materials:
 - e.g. Liquid Ar, PbWO
- Possible to build mixtures of NIST and user-defined materials

========	### Compound Materials from the NIST Data Base						
N Name	ChFormula	density(g/cm^3) I(eV)					
13 G4 Adi	pose_Tissue	0.92	63.2				
1	0.119477						
6	0.63724						
7	0.00797						
8	0.232333						
	0.0005						
	2e-05						
15	0.00016						
16	0.00073						
17							
	0.00032						
	2e-05						
	2e-05						
30	2e-05						
4 G4_Air		0.00120479	85.7				
	0.000124						
	0.755268						
8	0.231781						
	0.012827	4.54	550.4				
2 G4_Csl	0.47000	4.51	553.1				
	0.47692						
55	0.52308						

Part III: Geometry

Describe your detector

- A detector geometry is made of a number of volumes
- The largest volume is called **World** volume
 - It must contain all other volumes
- Derive your own concrete class from G4VUserDetectorConstruction abstract base class
- Implementing the virtual methods Construct() (pure virtual) and ConstructSDandFields():
 - Define shapes/solids required to describe the geometry
 - Construct all necessary materials
 - Construct and place volumes of your detector geometry
 - (Define "sensitivity" properties associated to volumes)
 - (Associate magnetic field to detector regions)
 - (Define visualization attributes for the detector elements)

Geometry: implementation basics

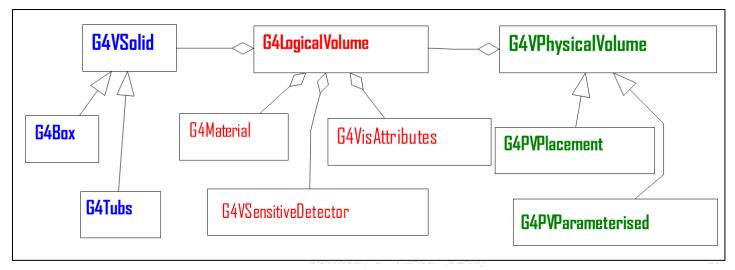
Implement a class inheriting from the abstract base class G4VUserDetectorConstruction:

```
class MyDetector : public G4VUserDetectorConstruction {
  public:
    virtual G4VPhysicalVolume* Construct(); // required
    virtual void ConstructSDAndField(); // optional
    // ...
};
```

Create an instance in the main program:

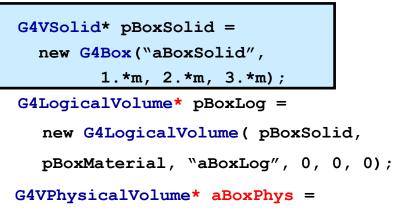
MyDetector* detector = new MyDetector();
runManager->SetUserInitialization(detector);

- <u>Note</u>: Split the implementation into more classes and methods! (good programming practice)
- <u>Note2</u>: you should not delete the <u>MyDetector</u> instance! Run manager does that automatically.


G4VUserDetectorConstruction

Method Construct()

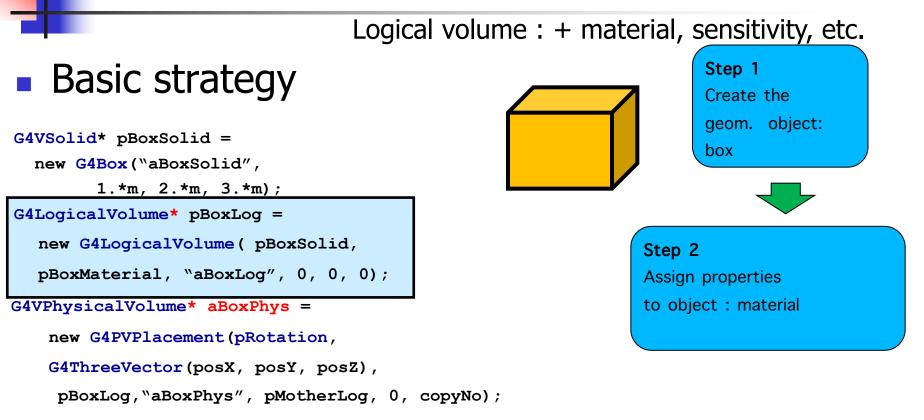
- Define materials
- Define solids and volumes of the geometry
- Build the tree hierarchy of volumes
- Define visualization attributes
- Return the world physical volume!
- Method ConstructSDAndField() MT
 - Assign magnetic field to volumes / regions
 - Define sensitive detectors and assign them to volumes


Three conceptual layers

- G4VSolid
 - *Shape*, size
- G4LogicalVolume
 - Hierarchy of volumes, *material*, sensitivity, magnetic field
- G4VPhysicalVolume
 - Position, rotation. The same logical volume can be placed many times (repeated modules)

Define detector geometry

new G4PVPlacement(pRotation,


G4ThreeVector (posX, posY, posZ),

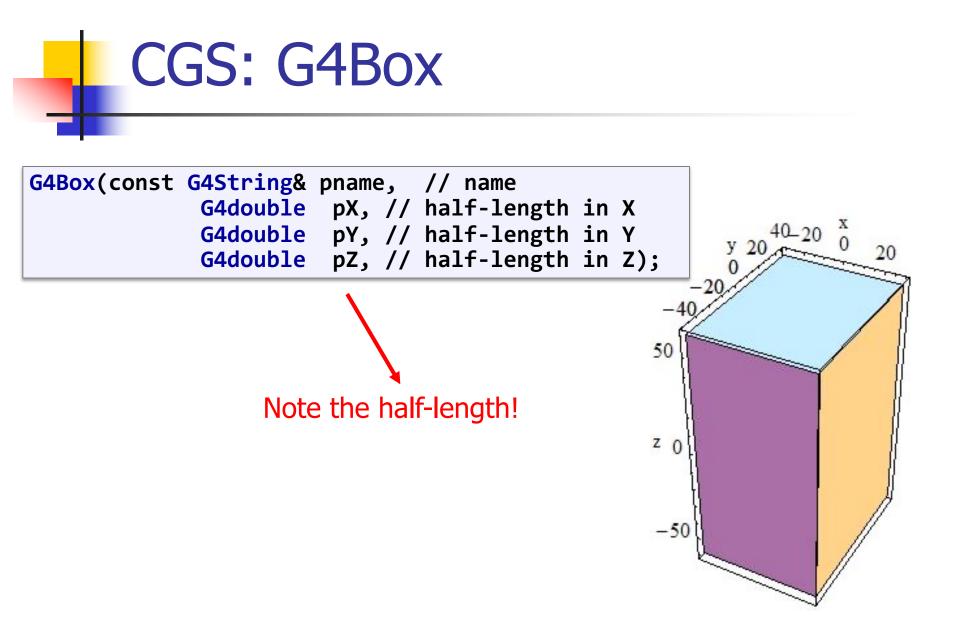
pBoxLog, "aBoxPhys", pMotherLog, 0, copyNo);

Solid: shape and size.

Step 1 Create the geom. object: box

Define detector geometry

Define detector geometry

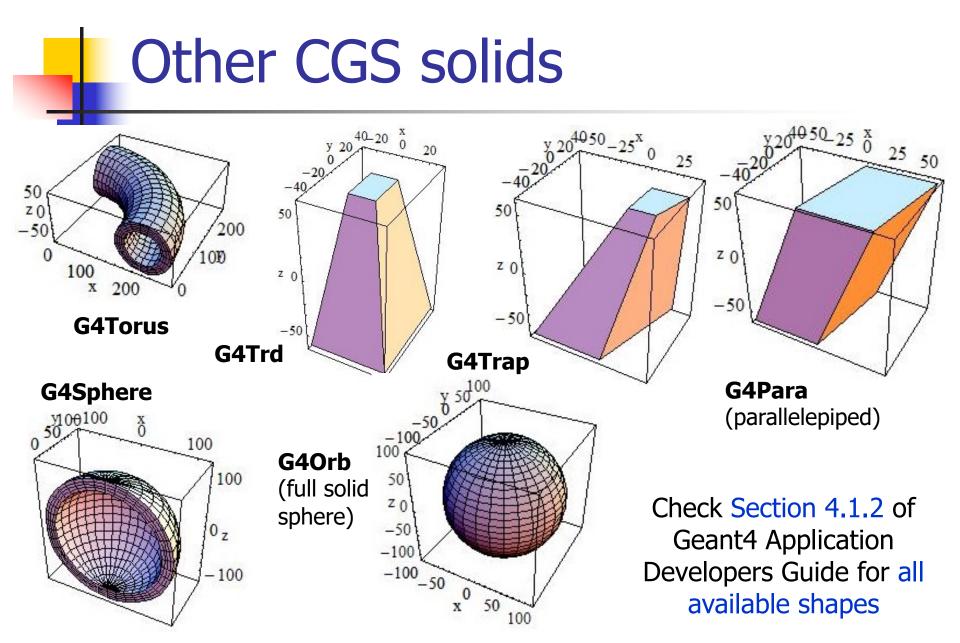

Solids

CSG (Constructed Solid Geometry) solids

- G4Box, G4Tubs, G4Cons, G4Trd, ...
- Analogous to simple GEANT3 CSG solids
- Specific solids (CSG like)
 - G4Polycone, G4Polyhedra, G4Hype, ...
 - G4TwistedTubs, G4TwistedTrap, ...
- BREP (Boundary REPresented) solids
 - G4BREPSolidPolycone, G4BSplineSurface, ...
 - Any order surface

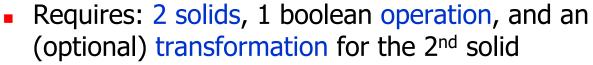
Boolean solids

G4UnionSolid, G4SubtractionSolid, ...

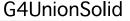


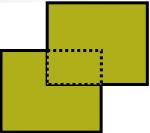
CGS: G4Tubs & G4Cons							
G4Tubs(const	G4double G4double G4double G4double	pRmin, pRmax, pDz, pSphi,	 	<pre>name inner radius (0) outer radius Z half! length starting Phi (0) segment angle (twopi)</pre>	y 10 y 10 z 0 -10 -20 y 10 z 0 -10 -20 z 0 z 0		

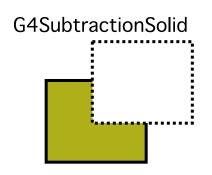
						X
G4Cons(const	G4String&	pname,	//	name		y ₁₀ 0
	G4double	pRmin1,	//	inner radius -pDz	-2	
	G4double	pRmax1,	//	outer radius -pDz	40 6	
	G4double	pRmin2,	//	inner radius +pDz	201	
	G4double	pRmax2,	//	outer radius +pDz		
	G4double	pDz,	//	Z half length	z 0	
	G4double	pSphi,	//	starting Phi	-20	
	G4double	pDphi);	//	segment angle	-40	
						Y J

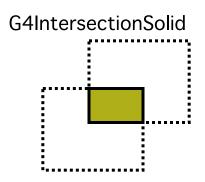

20

笧



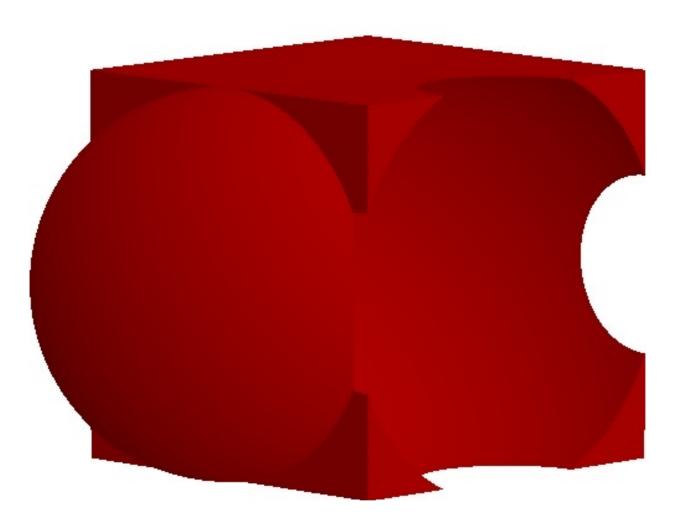

Boolean solids


- Solids can be **combined** using boolean operations:
 - G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid



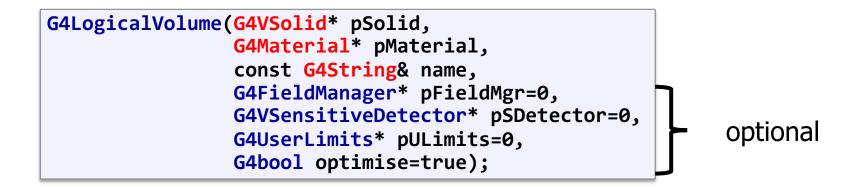
- 2nd solid is positioned relative to the coordinate system of the 1st solid
- Result of boolean operation becomes a solid → re-usable in a boolean operation
- Solids to be combined can be either CSG or other Boolean solids
- Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent CSG solids

Boolean solids – an example


```
G4VSolid* box = new G4Box("Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder =
    new G4Tubs("Cylinder",0.,50.*cm,50.*cm,0.,twopi);
```

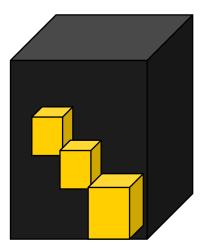
```
G4VSolid* union =
    new G4UnionSolid("Box+Cylinder", box, cylinder);
```

```
G4VSolid* subtract =
    new G4SubtractionSolid("Box-Cylinder", box, cylinder,
    0, G4ThreeVector(30.*cm,0.,0.));
```


```
G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4VSolid* intersect =
    new G4IntersectionSolid("Box&&Cylinder",
        box, cylinder, rm, G4ThreeVector(0.,0.,0.));
```

Boolean solid - example

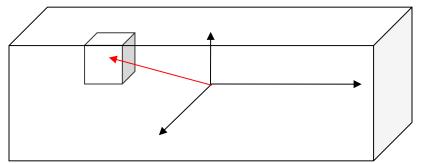
Logical volumes


- Contains all information of volume except position:
 - Shape and dimension (G4VSolid)
 - Material, sensitivity, visualization attributes
 - Hierarchy of daughter volumes
 - Magnetic field, User limits
- Physical volumes of same type can share a logical volume.
- The pointers to solid and material must be not nullptr

Physical volumes

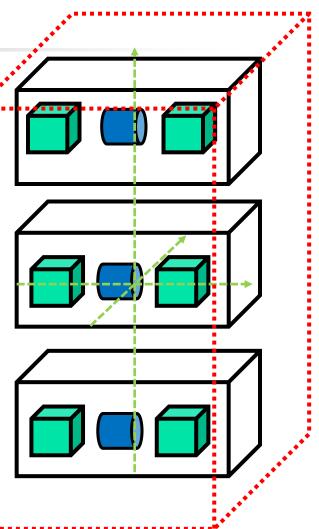
- A physical volume is a positioned instance of a logical volume inside another logical volume (the mother volume)
- Placement (G4PVPlacement)
 - it is one positioned volume
- Repeated: a volume placed many times
 - can represent any number of volumes
 - reduces use of memory
 - G4PVReplica (= simple repetition)
 - G4PVParameterised (= more complex pattern)
 - G4PVDivision

placement



repeated

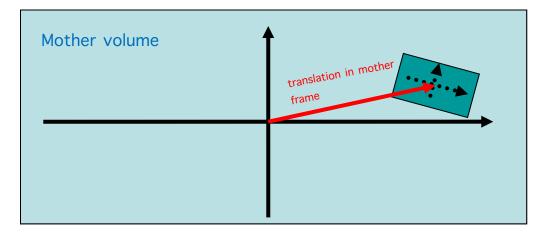
Geometry hierarchy


A volume is placed in its mother volume

- Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
- The origin of the mother's local coordinate system is at the center of the mother volume
- Daughter volumes cannot protrude from the mother volume
- Daughter volumes cannot overlap
- The logical volume of mother knows the daughter volumes it contains
 - It is uniquely defined to be their mother volume

Geometry hierarchy

- One logical volume can be placed more than once. One or more volumes can be placed in a mother volume
- The mother-daughter relationship is an information of G4LogicalVolume
 - If the mother volume is placed more than once, all daughters by definition appear in each placed physical volume
- The **world volume** must be a unique physical volume which fully contains all other volumes (root volume of the hierarchy)
 - The world volume defines the global coordinate system. The origin of the global coordinate system is at the center of the world volume
 - Position of a track is given with respect to the global coordinate system

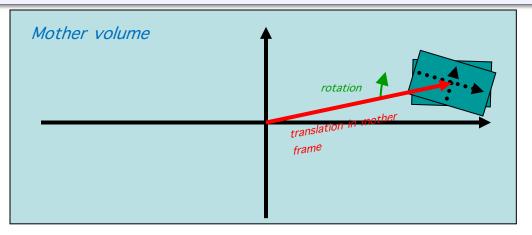

G4PVPlacement

- Single volume positioned relatively to the mother volume
 - In a frame rotated and translated relative to the coordinate system of the mother volume
- A few variants available:
 - Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame (*alternative constructor*)
 - specifying the mother volume as a pointer to its physical volume instead of its logical volume
- Four constructors available
 - Iogical OR physical volume as mother
 - active OR passive transformation of the coordinate system

G4PVPlacement Rotation <u>of</u> mother frame ...

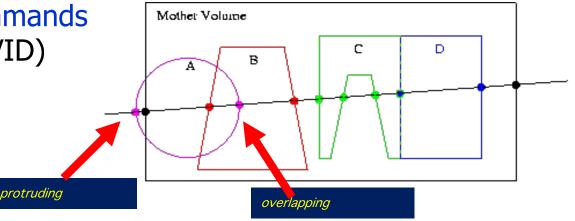
Single volume positioned relatively to the mother volume (passive transformation)

	<pre>// rotation of mother frame ite, // position in mother frame</pre>
G4LogicalVolume* pCurrentLogical,	
const G4String& pName,	
G4LogicalVolume* pMotherLogical,	
G4bool pMany,	// not used. Set it to false…
G4int pCopyNo,	// <u>unique</u> arbitrary index
G4bool pSurfChk=false);	<pre>// optional overlap check</pre>



G4PVPlacement Rotation <u>in</u> mother frame ...

Single volume positioned relatively to the mother volume (active transformation)


G4PVPlacement(G4Transform3D(

G4RotationMatrix &pRot, // rotation in daughter frame const G4ThreeVector &tlate), // position in mother frame G4LogicalVolume *pDaughterLogical, const G4String &pName, G4LogicalVolume *pMotherLogical, G4bool pMany, // not used, set it to false... G4int pCopyNo, // unique arbitrary integer G4bool pSurfChk=false); // optional overlap check

Geometry problems

- Geant4 does not allow for malformed geometries, neither protruding (daughter/mother) not overlapping (sisters)
 - The behavior of navigation is unpredictable for such cases
- The problem of detecting overlaps between volumes is bounded by the complexity of the solid models description
- Utilities are provided for detecting wrong positioning
 - Optional checks at construction
 - Kernel run-time commands
 - Graphical tools (DAVID)

Tools for geometry check

Constructors of G4PVPlacement and G4PVParameterised have an optional argument "pSurfChk"

G4PVPlacement(G4RotationMatrix* pRot, const G4ThreeVector &tlate, G4LogicalVolume *pDaughterLogical, const G4String &pName, G4LogicalVolume *pMotherLogical, G4bool pMany, G4int pCopyNo, G4bool pSurfChk=false);

- If this flag is true, overlap check is done at the construction
- Some number of points are randomly sampled on the surface of creating volume
- This check requires lots of CPU time, but it is worth to try at least once
- Built-in run-time commands to activate verification tests for the user geometry:
 - /geometry/test/run Or /geometry/test/grid_test
 - start verification of geometry for overlapping regions based on a standard grid setup, limited to the first depth level
 - /geometry/test/recursive_test for all depth levels (CPU intesive!)

Regions

A region is a sub-set of the geometry

- It may have its specific
 - Production thresholds (cuts)
 - User limits
 - Artificial limits affecting to the tracking, e.g. max step length, max number of steps, min kinetic energy left, etc.
 - Field manager
- World logical volume is recognized as the default region. User is not allowed to define a region to the world logical volume

