
materials & geometry
Pablo Cirrone

INFN – Laboratori Nazionali del Sud
A lot of material by J. Pipek

Pablo.cirrone@lns.infn.it

Geant4 Course
at the XXI Seminar on software for nuclear, subnuclear and

applied physics
Alghero, June 9th- 14th, 2024

Mandatory (and optional) user
classes

At initialization At execution

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction
G4VUserPhysicsList

main()
function

Mandatory (and optional) user
classes

At initialization At execution

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction
G4VUserPhysicsList

main()
function

The Detector Construction
n User class which describes the geometry must inherit

from G4VUserDetectorConstruction and registered
in the Run Manager

// ...
class G4VUserDetectorConstruction
{
 public:
 G4VUserDetectorConstruction();
 virtual ~G4VUserDetectorConstruction();

 public:
 virtual G4VPhysicalVolume* Construct() = 0;
 virtual void ConstructSDandField();

// ...
}

n Define the geometry of
your model
n All materials
n All volumes &

placements
n (Optionally) add fields
n (Optionally) define

volumes for read-out
(sensitive detectors)

Part I: Units

Note: Geant4 basic types

n Aliases for the primitive data types to provide cross-
platform compatibility:
n G4double, G4float, G4int, G4bool, G4long

n Enhanced version of string called G4String
n inherits from std::string ⇒ all methods and operators
n several additional methods

n G4ThreeVector is a three-component class corresponding to
a real physics vector (examples later)

Please, use these types for best compatibility (e.g. G4int instead
of int, etc., G4ThreeVector when it makes sense etc.)

G4ThreeVector dimensions {1.0, 2.0, 3.0 };

Units in Geant4
n Don’t use default units!

n When specifying dimensions, always multiply by an appropriate unit:

n Most common units are defined in CLHEP library (included in Geant4):

n You can define new units
n Output data in terms of a specific unit:

n divide a value by the unit:

► G4SystemOfUnits.hh

► CLHEP/SystemOfUnits.hh

G4double width = 12.5 * m;
G4double density = 2.7 * g/cm3;

G4cout << dE / MeV << " (MeV)" << G4endl;

System of units in Geant4

n All other units derived from the basic ones.

n Useful feature: Geant4 can select the most appropriate unit
to use
n specify the category for the data (Length, Time, Energy, etc…):

 StepSize will be printed in km, m, mm or … fermi, depending on
its actual value

millimeter (mm)

nanosecond (ns)

megaelectronvolt (MeV)

unit charge (eplus)

kelvin candela

radian

steradian

G4cout << G4BestUnit(StepSize, "Length");

Defining new units
n New units can be defined directly as constants, or (suggested

way) via G4UnitDefinition
n G4UnitDefinition (“name”, “symbol”,
“category”, value)

n Example (mass thickness):
n G4UnitDefinition (“grammpercm2”, “g/cm2”,
“MassThickness”, g/cm2);

n The new category “MassThickness” will be registered in the
kernel in G4UnitsTable

n To print the list of units:
n From the code
 G4UnitDefinition::PrintUnitsTable();
n At run-time, as UI command:

 Idle> /units/list

Part II: Materials

Materials
n Different levels of material description:

n isotopes à G4Isotope
n elements à G4Element
n molecules à G4Material
n compounds and mixtures à G4Material

n Attributes associated:
n Density (mandatory)
n Temperature, Pressure, State (gas, liquid, …)

Materials
n G4Isotope and G4Element describe properties of

the atoms:
n Atomic number, number of nucleons, mass of a mole,

shell energies, cross-sections per atoms, etc…
n G4Material describes the macroscopic

properties of the matter:
n temperature, pressure, state, density
n Radiation length, absorption length, etc…

n G4Material is used by tracking, geometry and
physics in Geant4
n Material properties computed from elemental

properties à assuption of linear combination

Elements and isotopes
n If you need an element made by a non-natural

isotopic composition (e.g. enrGe)
n Build isotopes

n … and assemble into elements

G4Isotope(const G4String& name,
 G4int z, // atomic number
 G4int n, // number of nucleons
 G4double a); // mass of mole

G4Element::AddIsotope(G4Isotope* iso, // isotope
 G4double relAbund); // fraction of nuclei

G4Element (const G4String& name,
 const G4String& symbol, // element symbol
 G4int nIso); // n. of isotopes

… for instance
n Build enrU

n For element with natural isotopic composition,
definition is easier

G4Isotope* U5 = new G4Isotope(name="U235", iz=92, n=235,
a=235.01*g/mole);

G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238,
a=238.03*g/mole);

G4Element* elU = new G4Element(name="enriched Uranium", symbol="U",
ncomponents=2);

elU->AddIsotope(U5, abundance= 90.*perCent);
elU->AddIsotope(U8, abundance= 10.*perCent);

a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);
G4cout << elO << G4endl; //printout of element info

Do not forget unit (g/mole)

Do not forget unit (g/mole)

Elements and molecules
n Single-element materials

n Molecule (composition by number of atoms)

G4double z, a, density;
density = 1.390*g/cm3;
a = 39.95*g/mole;
G4Material* lAr = new G4Material("liquidAr", z=18, a, density);

a = 1.01*g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a);

a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);

density = 1.000*g/cm3;
G4Material* H2O = new G4Material("Water", density, ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);

Materials: compounds
n Composition by fraction of mass
a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N", z= 7., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen",symbol="O", z= 8., a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);

Materials: mixtures

n Composition of mixtures
G4Element* elC = …; // define “carbon” element
G4Material* SiO2 = …; // define “quartz” material
G4Material* H2O = …; // define “water” material
density = 0.200*g/cm3;

G4Material* aerogel = new G4Material("Aerogel",
density, ncomponents=3);

aerogel->AddMaterial(SiO2,fractionmass=62.5*perCent);
aerogel->AddMaterial(H2O, fractionmass=37.4*perCent);
aerogel->AddElement (elC, fractionmass= 0.1*perCent);

Example: a gas

n It may be necessary to specify temperature and
pressure
n (dE/dx computation affected)

G4double density = 27. * mg/cm3;
G4double temperature = 325. * kelvin;
G4double pressure = 50. * atmosphere;

G4Material* CO2 = new G4Material("CO2Gas", density,
ncomponents=2, kStateGas, temperature, pressure);

CO2->AddElement(C, natoms = 1);
CO2->AddElement(O, natoms = 2);

"Vacuum"
n Absolute vacuum does not exist:

n Model it as a gas at very low density!
n Cannot define materials composed of multiple

elements through Z or A, or with ρ=0
G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;

G4Material* Vacuum = new G4Material("interGalactic",
atomicNumber, massOfMole, density,
kStateGas, temperature, pressure);

The NIST database
n All elements and many commonly-used materials

available in Geant4 through the NIST database
n No need to predefine elements and materials
n Retrieve materials from NIST manager:

n UI commands

G4NistManager* manager = G4NistManager::Instance();
G4Material* H2O = manager->FindOrBuildMaterial("G4_WATER");
G4Material* vacuum = manager->FindOrBuildMaterial("G4_Galactic");

/material/nist/listMaterials

/material/nist/printElement ß print defined elements

ß print defined materials

The NIST database: elements
n NIST database for elements and

materials is imported in Geant4
n http://physics.nist.gov/Phys

RefData
n UI commands specific for handling

materials
n The best accuracy for the most

relevant parameters guaranteed:
n Density
n Mean excitation potential
n Element composition
n Isotope composition
n Various corrections

• Natural isotope compositions
• More than 3000 isotope masses

http://geant4.cern.ch/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/apas08.html

NIST materials

n NIST Elements:
n H à Cf (Z = 1 à 98)

n NIST compounds:
n e.g. “G4_ADIPOSE_TISSUE_IRCP”

n HEP and Nuclear materials:
n e.g. Liquid Ar, PbWO

n Possible to build mixtures of NIST and
user-defined materials

Part III: Geometry

Describe your detector
n A detector geometry is made of a number of volumes
n The largest volume is called World volume

n It must contain all other volumes
n Derive your own concrete class from G4VUserDetectorConstruction

abstract base class
n Implementing the virtual methods Construct()(pure virtual) and

ConstructSDandFields():
n Define shapes/solids required to describe the geometry
n Construct all necessary materials
n Construct and place volumes of your detector geometry
n (Define "sensitivity" properties associated to volumes)
n (Associate magnetic field to detector regions)
n (Define visualization attributes for the detector elements)

Geometry: implementation
basics

n Implement a class inheriting from the abstract
base class G4VUserDetectorConstruction:

n Create an instance in the main program:

class MyDetector : public G4VUserDetectorConstruction {
public:
 virtual G4VPhysicalVolume* Construct(); // required

 virtual void ConstructSDAndField(); // optional
 // ...
};

MyDetector* detector = new MyDetector();
runManager->SetUserInitialization(detector);

n Note: Split the implementation into more classes and methods! (good
programming practice)

n Note2: you should not delete the MyDetector instance! Run manager does
that automatically.

G4VUserDetectorConstruction

n Method Construct()
n Define materials
n Define solids and volumes of the geometry
n Build the tree hierarchy of volumes
n Define visualization attributes
n Return the world physical volume!

n Method ConstructSDAndField()
n Assign magnetic field to volumes / regions
n Define sensitive detectors and assign them to

volumes
► G4VUserDetectorConstruction.hh

MT

Three conceptual layers
n G4VSolid

n Shape, size
n G4LogicalVolume

n Hierarchy of volumes, material, sensitivity, magnetic field
n G4VPhysicalVolume

n Position, rotation. The same logical volume can be placed many times
(repeated modules)

Define detector geometry

n Basic strategy Step 1
Create the
geom. object:
box

Solid: shape and size.

G4VSolid* pBoxSolid =
 new G4Box(“aBoxSolid”,
 1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid,

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

 G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ),

pBoxLog,“aBoxPhys”, pMotherLog, 0, copyNo);

Define detector geometry

n Basic strategy
G4VSolid* pBoxSolid =
 new G4Box(“aBoxSolid”,
 1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid,

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

 G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ),

pBoxLog,“aBoxPhys”, pMotherLog, 0, copyNo);

Step 1
Create the
geom. object:
box

Step 2
Assign properties
to object : material

Logical volume : + material, sensitivity, etc.

Define detector geometry

n Basic strategy
G4VSolid* pBoxSolid =
 new G4Box(“aBoxSolid”,
 1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid,

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

 G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ),

pBoxLog,“aBoxPhys”, pMotherLog, 0, copyNo);

Step 1
Create the
geom. object:
box

Step 2
Assign properties
to object : material

Step 3
Place it in the coordinate system of
mother volume

Physical volume : + rotation and position

Solids
n CSG (Constructed Solid Geometry)

solids
n G4Box, G4Tubs, G4Cons, G4Trd, …
n Analogous to simple GEANT3 CSG solids

n Specific solids (CSG like)
n G4Polycone, G4Polyhedra, G4Hype, …
n G4TwistedTubs, G4TwistedTrap, …

n BREP (Boundary REPresented) solids
n G4BREPSolidPolycone,

G4BSplineSurface, …
n Any order surface

n Boolean solids
n G4UnionSolid, G4SubtractionSolid, …

CGS: G4Box
G4Box(const G4String& pname, // name
 G4double pX, // half-length in X
 G4double pY, // half-length in Y
 G4double pZ, // half-length in Z);

Note the half-length!

CGS: G4Tubs & G4Cons
G4Tubs(const G4String& pname, // name
 G4double pRmin, // inner radius (0)
 G4double pRmax, // outer radius
 G4double pDz, // Z half! length
 G4double pSphi, // starting Phi (0)
 G4double pDphi); // segment angle (twopi)

G4Cons(const G4String& pname, // name
 G4double pRmin1, // inner radius -pDz
 G4double pRmax1, // outer radius -pDz
 G4double pRmin2, // inner radius +pDz
 G4double pRmax2, // outer radius +pDz
 G4double pDz, // Z half length
 G4double pSphi, // starting Phi
 G4double pDphi); // segment angle

Other CGS solids

G4Trd
G4Sphere

G4Torus

Check Section 4.1.2 of
Geant4 Application

Developers Guide for all
available shapes

G4Orb
(full solid
sphere)

G4Para
(parallelepiped)

G4Trap

Boolean solids
n Solids can be combined using boolean

operations:
n G4UnionSolid, G4SubtractionSolid,
G4IntersectionSolid

n Requires: 2 solids, 1 boolean operation, and an
(optional) transformation for the 2nd solid

n 2nd solid is positioned relative to the coordinate
system of the 1st solid

n Result of boolean operation becomes a solid à
re-usable in a boolean operation

n Solids to be combined can be either CSG or
other Boolean solids

n Note: tracking cost for the navigation in a
complex Boolean solid is proportional to the
number of constituent CSG solids

G4UnionSolid

G4SubtractionSolid

G4IntersectionSolid

Boolean solids – an example
G4VSolid* box = new G4Box("Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder =

new G4Tubs("Cylinder",0.,50.*cm,50.*cm,0.,twopi);

G4VSolid* union =
new G4UnionSolid("Box+Cylinder", box, cylinder);

G4VSolid* subtract =
new G4SubtractionSolid("Box-Cylinder", box, cylinder,

 0, G4ThreeVector(30.*cm,0.,0.));

G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4VSolid* intersect =

new G4IntersectionSolid("Box&&Cylinder",
 box, cylinder, rm, G4ThreeVector(0.,0.,0.));

Boolean solid - example

Logical volumes
n Contains all information of volume except position:

n Shape and dimension (G4VSolid)
n Material, sensitivity, visualization attributes
n Hierarchy of daughter volumes
n Magnetic field, User limits

n Physical volumes of same type can share a logical volume.
n The pointers to solid and material must be not nullptr

G4LogicalVolume(G4VSolid* pSolid,
G4Material* pMaterial,

 const G4String& name,
G4FieldManager* pFieldMgr=0,

 G4VSensitiveDetector* pSDetector=0,
 G4UserLimits* pULimits=0,
 G4bool optimise=true);

optional

Physical volumes
n A physical volume is a positioned

instance of a logical volume inside another
logical volume (the mother volume)

n Placement (G4PVPlacement)
n it is one positioned volume

n Repeated: a volume placed many times
n can represent any number of volumes
n reduces use of memory
n G4PVReplica (= simple repetition)
n G4PVParameterised (= more complex

pattern)
n G4PVDivision repeated

placement

Geometry hierarchy
n A volume is placed in its mother volume

n Position and rotation of the daughter volume is described with
respect to the local coordinate system of the mother volume

n The origin of the mother's local coordinate system is at the
center of the mother volume

n Daughter volumes cannot protrude from the mother volume
n Daughter volumes cannot overlap

n The logical volume of mother knows the daughter volumes it
contains
n It is uniquely defined to be their mother volume

Geometry hierarchy
§ One logical volume can be placed more than

once. One or more volumes can be placed in a
mother volume

§ The mother-daughter relationship is an
information of G4LogicalVolume
§ If the mother volume is placed more than once,

all daughters by definition appear in each placed
physical volume

§ The world volume must be a unique physical
volume which fully contains all other volumes
(root volume of the hierarchy)
§ The world volume defines the global coordinate

system. The origin of the global coordinate
system is at the center of the world volume

§ Position of a track is given with respect to the
global coordinate system

G4PVPlacement

n Single volume positioned relatively to the mother volume
n In a frame rotated and translated relative to the coordinate

system of the mother volume
n A few variants available:

n Using G4Transform3D to represent the direct rotation and
translation of the solid instead of the frame (alternative
constructor)

n specifying the mother volume as a pointer to its physical
volume instead of its logical volume

n Four constructors available
n logical OR physical volume as mother
n active OR passive transformation of the coordinate

system

G4PVPlacement
Rotation of mother frame …

Mother volume

rotation

tran
slati

on i
n m

othe
r

fram
e

Mother volume

translatio
n in mother

frame

Single volume positioned relatively to the mother volume
(passive transformation)

G4PVPlacement(G4RotationMatrix* pRot, // rotation of mother frame
 const G4ThreeVector& tlate, // position in mother frame

G4LogicalVolume* pCurrentLogical,
 const G4String& pName,

G4LogicalVolume* pMotherLogical,
G4bool pMany, // not used. Set it to false…
G4int pCopyNo, // unique arbitrary index

 G4bool pSurfChk=false); // optional overlap check

G4PVPlacement
Rotation in mother frame …

rotation

Mother volume

translation
 in mother

frame

G4PVPlacement(G4Transform3D(
G4RotationMatrix &pRot, // rotation in daughter frame

 const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterLogical,

 const G4String &pName,
 G4LogicalVolume *pMotherLogical,
 G4bool pMany, // not used, set it to false…
 G4int pCopyNo, // unique arbitrary integer
 G4bool pSurfChk=false); // optional overlap check

Single volume positioned relatively to the mother
volume (active transformation)

Geometry problems
n Geant4 does not allow for malformed geometries, neither

protruding (daughter/mother) not overlapping (sisters)
n The behavior of navigation is unpredictable for such cases

n The problem of detecting overlaps between volumes is
bounded by the complexity of the solid models description

n Utilities are provided for detecting wrong positioning
n Optional checks at construction
n Kernel run-time commands
n Graphical tools (DAVID)

protruding overlapping

Tools for geometry check
§ Constructors of G4PVPlacement and G4PVParameterised have an optional

argument “pSurfChk”

§ If this flag is true, overlap check is done at the construction
§ Some number of points are randomly sampled on the surface of creating

volume
§ This check requires lots of CPU time, but it is worth to try at least once
§ Built-in run-time commands to activate verification tests for the user geometry:

§ /geometry/test/run or /geometry/test/grid_test
§ start verification of geometry for overlapping regions based on a standard

grid setup, limited to the first depth level
§ /geometry/test/recursive_test for all depth levels (CPU intesive!)

G4PVPlacement(G4RotationMatrix* pRot,
const G4ThreeVector &tlate,
G4LogicalVolume *pDaughterLogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, G4int pCopyNo,
G4bool pSurfChk=false);

Regions
n A region is a sub-set of the geometry
n It may have its specific

n Production thresholds (cuts)
n User limits

n Artificial limits affecting to the tracking, e.g. max step
length, max number of steps, min kinetic energy left, etc.

n Field manager
n World logical volume is recognized as the default

region. User is not allowed to define a region to
the world logical volume

Hands on….

