
Building a application
GAP Cirrone

INFN – Laboratori Nazionali del Sud
A lot of material by J. Pipekcirrone@lns.infn.it

Geant4 Course
at the XXI Seminar on software for nuclear, subnuclear and

applied physics
Alghero, June 9th- 14th, 2024

Application build checklist

1. Properly organize your code into directories
2. Prepare a CMakeLists.txt file
3. Create a build directory and run CMake
4. Compile (make) the application
5. Run the application

1) Structure of an application
Official basic/B1 example: The text file CMakeLists.txt is the

CMake script containing commands which
describe how to build the exampleB1
application

contains main()
for the application

Macro file containing the commands

Header files

Source files
Note: Recommended, not enforced!

2) CMake
n CMake is a build configuration tool

n it takes configuration file (CMakeLists.txt)
n it finds all dependencies (in our case, Geant4)

n there might be others, e.g. ROOT, MySql, …
n creates Makefile to run the compilation itself

n You have to write this CMakeLists.txt file
n take inspiration in examples directories
n be sure to set the name of your application correctly
n specify all auxiliary files you need

Note: It is possible but discouraged to base build on GNU make instead of CMake.

CMakeList.txt – an example
cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(B1)
option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis
drivers" ON)
if(WITH_GEANT4_UIVIS)
 find_package(Geant4 REQUIRED ui_all vis_all)
else()
 find_package(Geant4 REQUIRED)
endif()

include(${Geant4_USE_FILE})
include_directories(${PROJECT_SOURCE_DIR}/include)

file(GLOB sources ${PROJECT_SOURCE_DIR}/src/*.cc)
file(GLOB headers ${PROJECT_SOURCE_DIR}/include/*.hh)

add_executable(exampleB1 exampleB1.cc ${sources} ${headers})
target_link_libraries(exampleB1 ${Geant4_LIBRARIES})

set(EXAMPLEB1_SCRIPTS
 exampleB1.in
 exampleB1.out
 init_vis.mac
 run1.mac
 run2.mac
 vis.mac
)

foreach(_script ${EXAMPLEB1_SCRIPTS})
 configure_file(
 ${PROJECT_SOURCE_DIR}/${_script}
 ${PROJECT_BINARY_DIR}/${_script}
 COPYONLY
)

File structure
1) Cmake minimum version

and project name
2) Find and configure G4

3) Configure the project to use
G4 and B1 headers

4) List the sources
5) Define and link the

executable
6) Copy any macro files to the

build directory

3) Build directory & CMake
n If modifying the Geant4 examples, copy them

to your $HOME first:

n Create a build directory*, where the
compiled application will be put:

*Note: It is possible (though not recommended) to compile inside source directory.

cp –r /usr/local/geant4/geant4.v11.2.0/examples/basic/B1 ~

mkdir –p ~/B1-build
cd ~/B1-build

Run CMake
n In the build directory you

just created, run CMake

cmake -DGeant4_DIR=/usr/local/geant4/geant4.10.05.p01-
install/lib64/Geant4-10.5.1/ ~/B1/

Path to
Geant4

Path to
source

-- The C compiler identification is GNU 4.8.5
-- The CXX compiler identification is GNU 4.8.5
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/build/directory

4) Compilation
n In the build directory, run make

(and don’t get a cup of coffee)
n You have only a couple of files, it should be ready in a

minute or two
n An executable with the name of your application is

created (e.g. exampleB1) in build directory
n Macros and other auxiliary files are copied into build

directory

✘make

Scanning dependencies of target exampleB1
[12%] Building CXX object CMakeFiles/exampleB1.dir/exampleB1.cc.o
[25%] Building CXX object CMakeFiles/exampleB1.dir/src/B1RunAction.cc.o
[37%] Building CXX object CMakeFiles/exampleB1.dir/src/B1SteppingAction.cc.o
[50%] Building CXX object CMakeFiles/exampleB1.dir/src/B1DetectorConstruction.cc.o
[62%] Building CXX object CMakeFiles/exampleB1.dir/src/B1PrimaryGeneratorAction.cc.o
[75%] Building CXX object CMakeFiles/exampleB1.dir/src/B1EventAction.cc.o
[87%] Building CXX object CMakeFiles/exampleB1.dir/src/B1ActionInitialization.cc.o
[100%] Linking CXX executable exampleB1
[100%] Built target exampleB1

5) Running the application -
GUI

n Just type the name of your application, including the
./ identifier of current directory (e.g. ./exampleB1)

n By default, graphical user interface is started*

./exampleB1

Available UI session types: [Qt, GAG, tcsh, csh]

*Note: Depends on your
application main(), Geant4
configuration, etc.

Conclusions

Building an application is easy J

