

Dr. Alexei Sytov INFN Sezione di Ferrara

Applications of laser-driven radiation: current activities at INFN

XXI Seminar on Software for Nuclear, Subnuclear and Applied Physics Alghero 14/06/2024

World of particle accelerators

Germany DESY 4th gen Synchrotron Light Source PETRA-IV: €1.54 billion

Pohang 4th gen X-FEL: \$390 million

World of particle accelerators: European X-FEL, DESY

https://roadmap2021.esfri.eu/projects-and-landmarks/browse-the-catalogue/european-xfel/

World of particle accelerators: cancer radiotherapy

7 million patients in 2023

5-year relative survival rate > 90 %

Procedure cost \$ 5000-50000

RADIOTHERAPY MARKET GLOBAL FORECAST TO 2028 (USD BN)

5.0%

The global radiotherapy market is expected to be worth USD 8.8 billion by 2028, growing at a CAGR of 5.0% during the forecast period.

Cyclotron facility cost \$10 million X-ray facility cost \$3 million

https://www.marketsandmarkets.com/Market-Reports/radiotherapy-monitoring-devices-market-567.html 4

World market of particle accelerators

Idea of plasma wakefield acceleration

Particle accelerators are huge and dramatically expensive!

Collider at CERN

Prof. Toshiki Tajima

Prof. John W. Dawson

Idea: to shrink the accelerators to the table-top size

We can use plasma to accelerate charge particles

But: we need a very **powerful laser**

T. Tajima and J. M. Dawson. Laser Electron Accelerator Phys. Rev. Lett. 43, 267 (1979)

Physics of plasma acceleration: just like wakesurfing!

Picture: H.T. Kim et al. Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers Appl. Sci. 2021, 11, 5831.

Radiation source based on plasma acceleration of electrons

F. Albert, A. G. R. Thomas Laser wakefield accelerator-based light sources: outlook on applications

Wakefield Accelerated Electrons LWFA; e-PWFA; L→PWFA; p-PWFA

B. Hidding et al. Plasma Wakefield Accelerator Research 2019–2040 arXiv:1904.09205v1

Scientific centers working on plasma wakefield acceleration

B. Hidding et al. Plasma Wakefield Accelerator Research 2019–2040 arXiv:1904.09205v1

Example of a big project in plasma acceleration: EuPRAXIA

https://roadmap2021.esfri.eu/projects-and-landmarks/browse-the-catalogue/eupraxia/

Laser-driven plasma acceleration @EuPRAXIA

EuPRAXIA Conceptual Design Report

Beam-driven plasma acceleration @EuPRAXIA

R. Pompili et al. Nature 605, 659 (2022)

PALLAS Project

Test facility for laser-plasma injector optimisation towards RF control reliability

In the context of advanced accelerator high quality beam laser plasma injector (LPI) for **EuPRAXIA** [1] preparatory technical design phase and future high gradient accelerator R&D at IJClab [2]: 10 Hz 250MeV LPI test facility to improve **quality and stability of e- beam generated by laser-plasma accelerator**.

[1] : Assmann, R. W. et al. EuPRAXIA Conceptual Design Report. Eur. Phys. J. Spec. Top. 229, 3675–4284 (2020).

[2] pallas.ijclab.in2p3.fr

[3] Drobniak, P. et al. Random scan optimization of a laser-plasma electron injector based on fast particle-in-cell simulations. Phys. Rev. Accel. Beams 26, 091302 (2023), Drobniak, P. et al. Two-chamber gas target for laser-plasma accelerator electron

source. Preprint at http://arxiv.org/abs/2309.11921 (2023).

PALLAS Project: Machine Learning

A modeling of the **full beamline** using **Geant4** is **required** for collimator design.

Dataset and first ML model generated by PALLAS

INFN Ferrara: implementation of plasma acceleration ML model into Geant4 to create a Geant4 electron beam source based on plasma acceleration


```
PrimaryGeneratorAction::PrimaryGeneratorAction(): G4VUserPrimaryGeneratorAction(),
    fParticleGun(0),
    fEnvelopeBox(0)
```

```
G4int n_particle = 1;
fParticleGun = new G4ParticleGun(n_particle);
```

// default particle kinematic
fParticleGun->SetParticleDefinition(
 G4ParticleTable::GetParticleTable()->FindParticle("e-"));

//Neural network: create onnx session Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "plasma"); Ort::SessionOptions session_options; session_options.SetIntraOpNumThreads(1); auto sessionLocal = std::make_unique<Ort::Session>(env, "model2.onnx", session_options); fSession = std::move(sessionLocal);

// Get input node information
fMemory_info = Ort::MemoryInfo::CreateCpu(
 OrtAllocatorType::OrtArenaAllocator, OrtMemTypeDefault);

Examples of investment in plasma acceleration: ELI

Extreme Light Infrastructure

TIMELINE

Roadmap Entry

2006

Dr

Preparation Phase

2007-2010

Implementation/Construction Phase construction

2011-2017

Operation Start

2018

capital value 850 M€

Not Available

ESTIMATED COSTS

preparation

6 M€

850 M€

design

operation 80 M€/year The world's fastest and most intense advanced lasers to unravel the fundamental secrets of the Universe and materials

> This is where the most power lasers are!

> > This is where plasma borns!

http://roadmap2018.esfri.eu/projects-and-landmarks/browse-the-catalogue/eli/

Startups in plasma acceleration are coming!

Reached world record particle energy by plasma acceleration Claim to built first commercial X-FEL based on plasma acceleration by 2027

Plasma acceleration in solid state targets => towards accelerator on a chip

* Max F. Gilljohann, ..., A. Sytov, L. Bandiera, ..., T. Tajima, V. Shiltsev and S. Corde JINST 18 P11008 (2023)

Challenges and solutions

Keypoint quantities of plasma wave formation

$$E \left[\text{GV m}^{-1} \right] = m_e \omega_p c/e \approx 100 \sqrt{n_0} \left[10^{18} \text{ cm}^{-3} \right]$$

$$Solid \left\{ \begin{array}{c} 10^{23} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{22} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{20} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{10} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{10} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{10} \text{cm}^{-3} + 100 \text{ nm} \\ 10^{16} \text{cm}^{-$$

LWFA acceleration in CNTs based targets: the idea

*R.P. Yaday, I. Rago, ..., G. Cavoto, NIM A 1060, 169081 (2024)

LWFA acceleration in CNTs based targets in self-injection mode: simulations

Figure 28: Electron macroparticles shown as grey dots and the longitudinal electric field shown as a colour density plot for model A *constant* with $\Delta t = 8 \text{ fs}$ (3 cycles), $I_0 = 10^{21} \text{ W/cm}^2$: (a-b) t/T = 11; (c-d) t/T = 18; (e-f) t/T = 25.

30 shells with 535 CNT bundles (red points) distributed uniformly

Cristian Bontoiu, PhD Thesis Simulations with:

_ 22

LWFA acceleration in CNTs based targets: e- beam

	particle density [arb. u.]			Value			
	0 0.2 0.4 0.6 0	0.8 1	Parameter	∆t = 8 fs	Δt = 16 fs	∆t = 24 fs	Unit
60 40 20 20 20 20 20	- (a)		Charge, Q	1.08	1.19	0.79	nC
			Average kinetic energy, E _{kin}	23.31	14.50	15.33	MeV
			Average acceleration gradient, $E_{\rm kin}/L$	1.55	0.96	1.02	TeV/m
			Average Lorentz factor, γ	46.61	29.38	30.99	-
			FWHM bunch length, $\Delta t_{ m b}$	4.30	6.90	4.07	fs
			FWHM energy spread, ΔE	104	63	77	%
	-5 -2.5 0 2.5 t[fs]	5 5	RMS longitudinal emittance, $arepsilon_{ }$	17.01	11.32	9.95	fs-MeV
x [rad]	(b)		FWHM vertical size, Δx	1.21	1.11	1.77	μm
			FWHM horizontal size, Δz	1.23	1.59	1.82	μm
			FWHM vertical divergence, $\Delta { m x}'$	2.92	1.60	3.11	rad
			FWHM horizontal divergence, $\Delta z'$	1.85	1.47	3.11	rad
			RMS vertical emittance, ϵ_{x}	0.84	0.26	0.39	µm-rad
-1			RMS horizontal emittance, ε_z	0.85	0.33	0.38	µm-rad
	Cristian Bontoiu, PhD Thesis						

x [µm]

. 23

Let's dream about applications

A probable laser facility for the first proof-of-concept experiment

ELIMAIA-ELIMED Max laser energy Max Laser intens @FWHM

Focal spot size

Encircled laser e

Laser Intensity (ns-ASE)

Laser pulse widt

Laser repetition

Additional featu

Laser Pointing s target

y	10 J						
sity	Up to 3x10 ²¹ W/cm ²						
	< 3µm diameter						
energy	>30% @ FWHM >60% @1/e ²						
Contrast	<10 ⁻¹⁰						
h (<30 fs						
rate	single shot; 0.5 Hz in burst mode						
res	GDD (Group Delay Dispersion) and TOD (Third Order Dispersion) control						
tability on	<3 urad						

A probable laser facility for the first proof-of-concept experiment

26

Laser Power		350 TW	
Energy per pulse		>7 J	
Pulse duration		≤ 25 fs	
Focusing surface		36 μm² or better	I LOOL
Max power density (at the t	arget)	8.82·10 ²⁰	
Ι*λ ²		5.64·10 ²⁰	
Contrast ratio @100 ps (ASE	E)	> 10 ¹⁰	
Repetition rate		1 Hz	
	Max energy	50 MeV	LNS
Ductore land	Particle per pulse (at 30 MeV)	10 ¹¹ MeV ⁻¹ Sr ¹	
Protons ions	Energy spread	100%	
	Beam divergency (max)	±20°	
	Max energy	3 GeV	
Eletrons	Particles per pulse	10%	
	Beam divergency (max)	± 20 mad	
	Max energy	20 MeV	
Neutrons	Particles per pulse	10 ¹⁰	
Neutrons	Energy spread	100	
	Beam divergency	Isotropic	
Gamma X-beams	Synchrotron radiation of the electrons inside the plasma or breemsstrahlung		
	Energy	up to 80 MeV	

4th generation XFEL, Pohang Accelerator Laboratory

POHANG ACCELERATOR LABORATORY

HX2 upgrade plan: Attosecond & TW-scale HX FEL

Attosecond & TW- XFEL: Laser modulation section: Peak current enhancement by enhanced SASE

Courtesy of Dr. Inhyuk Nam

Extreme X-ray FEL intensity by nano-focusing

T.Tajima, M.Cavenago, Crystal X-ray accelerator, Phys. Rev. Lett., 59(13), 1440 (1987); X. Zhang, T. Tajima et al. PRAB 19, 101004 (2016) 28

How an oriented crystal looks like

from National Science Museum, Daejeon, Korea

Channeling effect*

*Channeling** is the effect of the penetration of charged particles through a monocrystal quasi parallel to its atomic axes or planes.

Let's dream about future lepton colliders!

***L. Bandiera et al. Eur. Phys. J. C 82, 699 (2022)

**V. Shiltsev, Physics-Uspekhi 55, (10), 965 (2012)

* Max F. Gilljohann, ..., A. Sytov, L. Bandiera, ..., T. Tajima, V. Shiltsev and S. Corde JINST 18 P11008 (2023)

31

Thank you for attention!