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Non-proton structures - Pions

• Pion is the Goldstone boson associated with 
SU(2) chiral symmetry breaking
• Simultaneously a 𝑞"𝑞 bound state
• Studying pion structures provides another 

angle to probe QCD and effective 
confinement scales
• More available data is desperately needed
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Pion PDFs in JAM
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Drell-Yan (DY)
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• Does not dramatically 
affect the PDF
• Successfully describe data 

with a scale 𝜇 = 𝑝!/2



Unpolarized TMD PDF

• 𝒃𝑻 is the Fourier conjugate to the intrinsic transverse momentum of 
quarks in the hadron, 𝒌𝑻
• Coordinate space correlations of quark fields in hadrons can tell us 

about their transverse momentum dependence
• Modification needed for UV and rapidity divergences; acquire 

regulators: 
6barry@anl.gov



• Cross section has hard part and two functions that describe structure 
of beam and target
• So called “𝑊”-term, optimized at low-𝑞#

Factorization for low-𝑞! Drell-Yan
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TMD PDF within the  𝑏∗ prescription
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Low-𝑏!: perturbative
high-𝑏!: non-perturbative

Relates the TMD at 
small-𝑏! to the collinear 
PDF
⇒ TMD is sensitive to 
collinear PDFs𝑔"/𝒩(&): intrinsic non-perturbative TMD structure 

of the hadron 𝒩(𝐴)
𝑔(: universal non-perturbative Collins-Soper 
kernel – same in all hadrons

• In this analysis, we use the MAP collaboration’s 
parametrizations JHEP 10 (2022) 127

Controls the perturbative 
evolution of the TMD



A few details

• Nuclear TMD model linear combination of bound protons and neutrons

• Include an additional 𝐴-dependent nuclear parameter

• Fit to fixed target 𝑝𝐴 and 𝜋𝐴 𝑞#-dependent DY data and collinear 𝜋 data
• We simultaneously fit: 𝜋 and 𝑝 TMDs, 𝜋 collinear PDFs, CS kernel, and 

nuclear TMD parameter
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-𝑓+/- 𝑥, 𝑏# , 𝜇, 𝜁 =
𝑍
𝐴
-𝑓+/./- 𝑥, 𝑏# , 𝜇, 𝜁 +

𝐴 − 𝑍
𝐴

-𝑓+///- 𝑥, 𝑏# , 𝜇, 𝜁

Alrashed, et al., Phys. Rev. Lett 129, 242001 (2022).



Note about E615 𝜋𝐴 Drell-Yan data

• Provides both 01
02!0 3

 (𝑝#-integrated) and 01
02!0."

 (𝑝#-dependent)
• Large constraints on 𝜋 collinear PDFs from 𝑝"-integrated
• Large constraints on 𝜋 TMD PDFs from 𝑝"-dependent

• Projections of same events ⇒ correlated measurements
• They have the same luminosity uncertainty, so they have the same 

overall normalization uncertainty
• To account for this, we equate the fitted normalizations of the two 

otherwise independent measurements
• No other guidance from experiment how the uncertainties are correlated
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Note on collinear DY theory

• When equating the normalizations, we found
• Tension when using NLO+NLL threshold resummed theory on the collinear 

observables
• Agreement when using NLO theory on the collinear observables

• We note that in the OPE part of the TMD formalism, we use NLO 
accuracy
• We do not use any threshold enhancements on the 𝑝"-dependent 

observables
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Data and theory agreement

• Fit both 𝑝𝐴 and 𝜋𝐴 DY data and achieve good agreement to both
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Extracted pion PDFs

• The small-𝑞#  data do not constrain much the PDFs
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Resulting TMD PDFs 
of proton and pion

• Broadening appearing 
as 𝑥 increases
• Up quark in pion is 

narrower than up 
quark in proton 
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Resulting average 𝑏!

• Average transverse spatial 
correlation of the up quark 
in proton is ∼ 1.2 times 
bigger than that of pion
• Pion’s 𝑏# 𝑥⟩ is 4 − 5.2𝜎 

smaller than proton in this 
range
• Decreases as 𝑥 decreases
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Emphasis on nonperturbative effects
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• The 𝑏# 𝑥⟩ grows appreciably in the large-𝑏#  region
• Saturation well beyond a perturbative scale
• Differences between proton and pion are in the nonperturbative region
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Transverse EMC effect

• Compare the 
average 𝑏#  given 𝑥 
for the up quark in 
the bound proton to 
that of the free 
proton
• Less than 1 by          
∼ 5 − 12% over the 
𝑥 range
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CS kernel

• Agreement with other 
phenomenological analyses, 
but with larger errors
• Good agreement with recent 

lattice data Phys. Lett. B 852, 
138617 (2024)
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Predictions for COMPASS: tungsten and 
aluminum targets
• Integrated over the 𝑀 range, and bin averaged in 𝑥4  (horizontal axis) 

and 𝑞#  (panels)

• The 𝜋Al spectrum appears wider in 𝑞#-space, consistent with the 
transverse EMC effect
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Predictions for COMPASS: NH3-He target 

• Each color represents a 
different 𝑥4  bin (smallest 
𝑥4  at the bottom)
• Much more finely binned 

in 𝑞#  than heavier nuclei!
• It should be noted that this 

is still a projection onto 
(𝑞# , 𝑥4) and the triply 
differential measurement 
will be very useful
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Takeaways and Outlook

• Pions and protons have significantly different nonperturbative TMD 
structure as evidenced from the low-energy data
• High energy data from the TeVatron and LHC provide further 

constraints on the proton TMDs and potentially collinear PDFs
• In order to fully trust the entire 𝑞#  spectrum, we should work 

towards including the full 𝑊 + 𝑌 theory
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Backup
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MAP parametrization

• The MAP collaboration (JHEP 10 (2022) 127) used the following form 
for the non-perturbative function

• 11 free parameters for each hadron (flavor dependence not 
necessary) (12 if we include the nuclear TMD parameter)barry@anl.gov 23
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Resulting 𝜒# for each parametrization

• Tried multiple 
parametrizations 
for non-
perturbative 
TMD structures
• MAP 

parametrization 
is able to 
describe better 
all the datasets
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Bayesian Inference

• Minimize the 𝜒5 for each replica

• Perform 𝑁 total 𝜒5 minimizations and compute statistical quantities
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Correlations

• Level at which the 
distributions are 
correlated with each 
other
• Different distributions 

are largely correlated 
only within themselves
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Collinear relation

• The TMD formalism requires that the integral over 𝑘#5  of the TMD 
gives the collinear PDF up to higher order corrections
• We demonstrate this for example in the proton case
• At larger 𝑄, the power corrections are less important
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Emphasis on nonperturbative effects
• We vary the collinear PDFs
𝑝: CT14nlo (blue) → MMHT14 (green)
𝜋: JAM (red) → xFitter (orange)
• No change in the quantity!
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Predictions for COMPASS: NH3-He target 

• Used a weighted average of N, H, and He parton 
distributions in the Drell-Yan formalism
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