

Transverse momentum dependent distributions of the pion and the nucleus

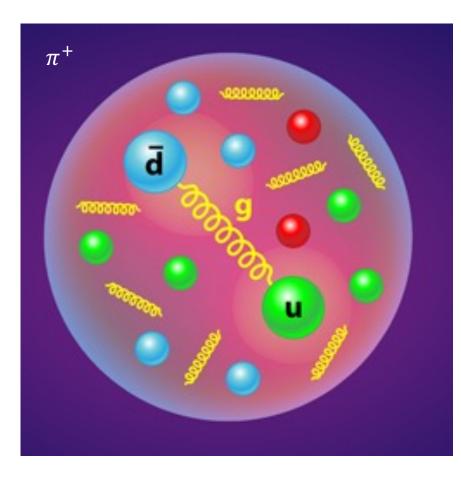
Patrick Barry

In collaboration with: Leonard Gamberg, Wally Melnitchouk, Eric ____Moffat, Daniel Pitonyak, Alexei Prokudin, and Nobuo Sato

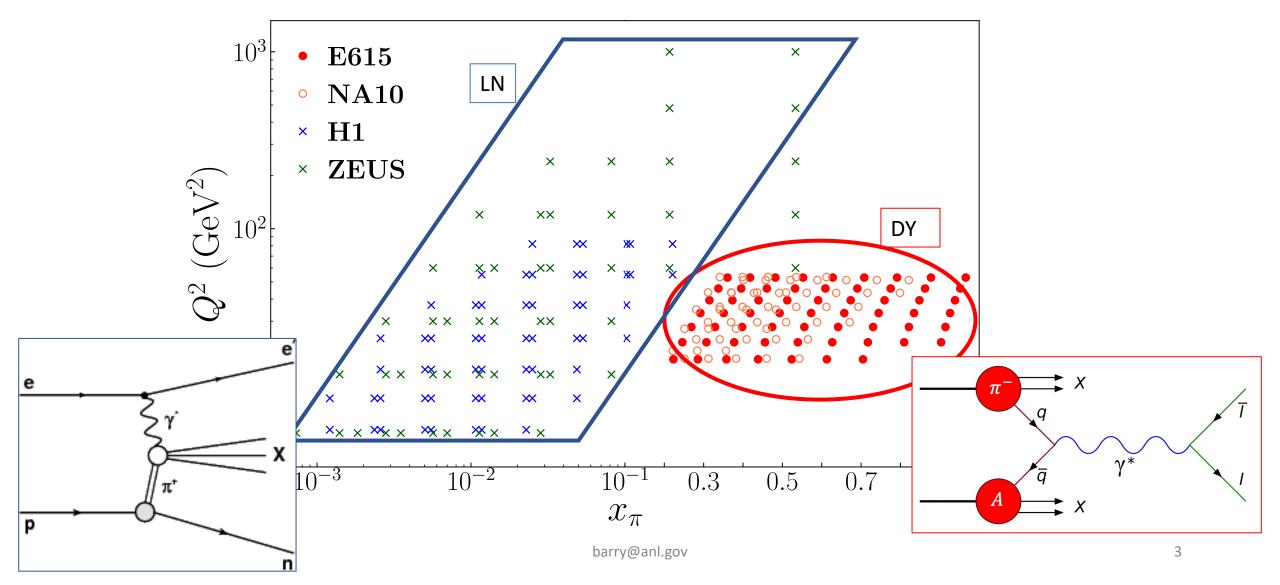
Based on: Phys. Rev. D 108, L091504 (2023).

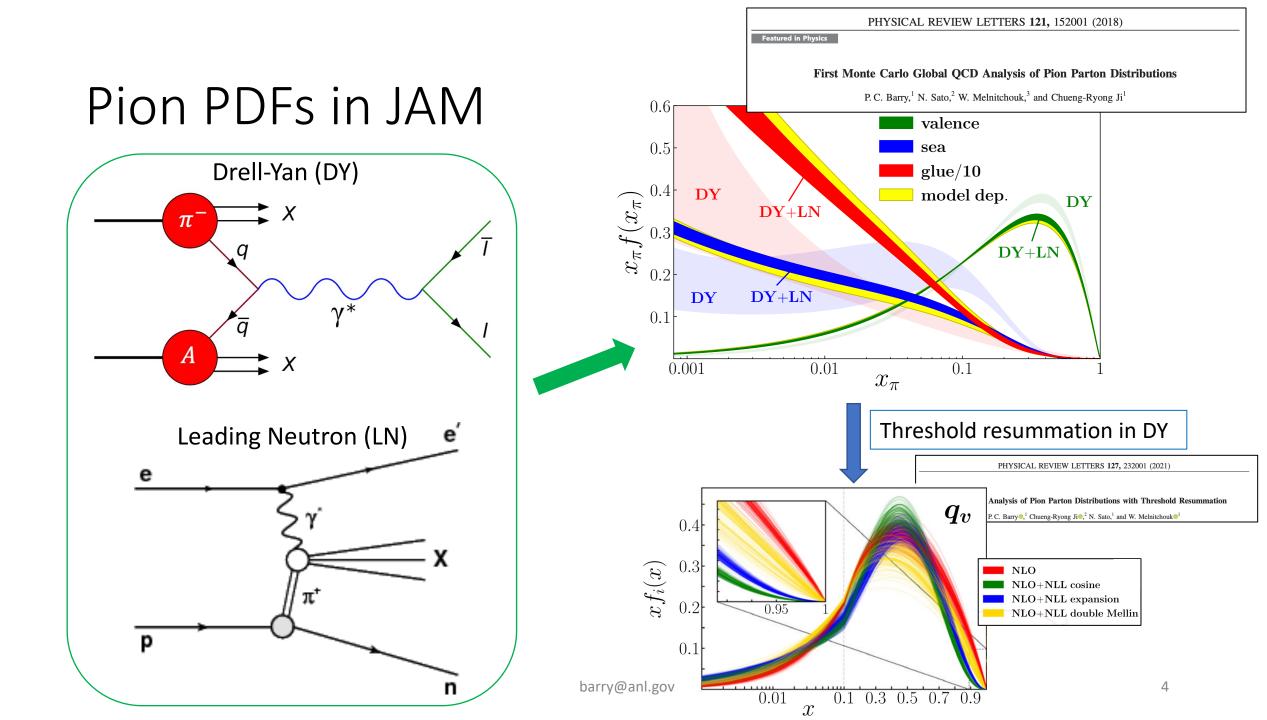
Non-proton structures - Pions

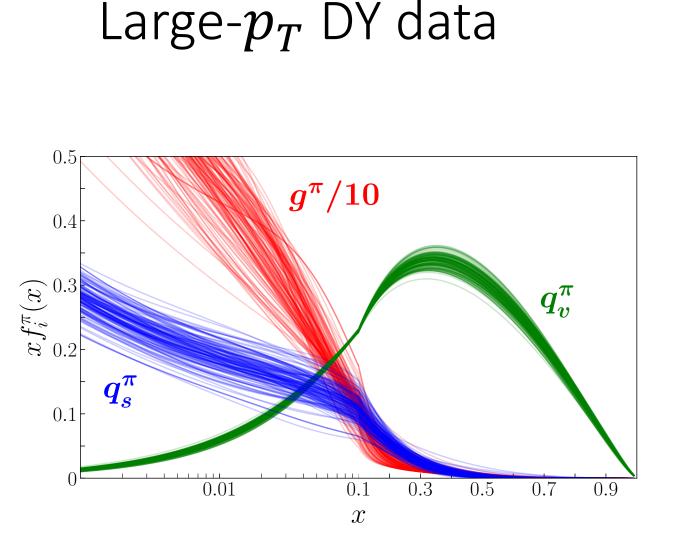
- Pion is the Goldstone boson associated with SU(2) chiral symmetry breaking
- Simultaneously a $q \overline{q}$ bound state
- Studying pion structures provides another angle to probe QCD and effective confinement scales
- More available data is desperately needed

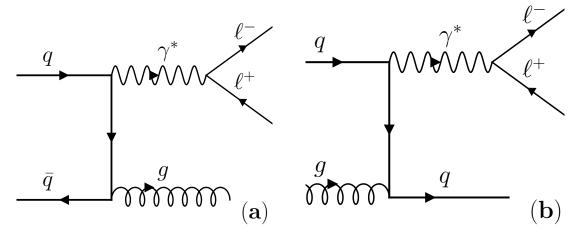


Available datasets for pion structures

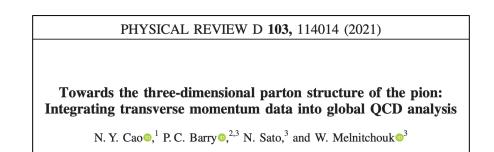




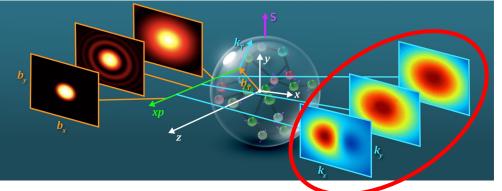




- Does not dramatically affect the PDF
- Successfully describe data with a scale $\mu = p_{\rm T}/2$



Unpolarized TMD PDF



$$\tilde{f}_{q/\mathcal{N}}(x,b_T) = \int \underbrace{\mathrm{d}b^-}{4\pi} e^{-ixP^+b^-} \mathrm{Tr}\left[\langle \mathcal{N} | \bar{\psi}_q(b)\gamma^+ \mathcal{W}(b,0)\psi_q(0) | \mathcal{N} \rangle\right]$$
$$b \equiv (b^-, 0^+, \boldsymbol{b}_T)$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- Coordinate space correlations of quark fields in hadrons can tell us about their transverse momentum dependence
- Modification needed for UV and rapidity divergences; acquire regulators: $\tilde{f}_{q/\mathcal{N}}(x, b_T) \rightarrow \tilde{f}_{q/\mathcal{N}}(x, b_T; \mu, \zeta)$

Factorization for low- q_T Drell-Yan

- Cross section has hard part and two functions that describe structure of beam and target
- So called "W"-term, optimized at low- q_T

$$\begin{aligned} \frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\tau\mathrm{d}Y\mathrm{d}q_{T}^{2}} &= \frac{4\pi^{2}\alpha^{2}}{9\tau S^{2}}\sum_{q}H_{q\bar{q}}(Q^{2},\mu)\int\mathrm{d}^{2}b_{T}\,e^{ib_{T}\cdot q_{T}}\\ &\times \tilde{f}_{q/\pi}(x_{\pi},b_{T},\mu,Q^{2})\,\tilde{f}_{\bar{q}/A}(x_{A},b_{T},\mu,Q^{2}) + \mathcal{O}\left(\frac{q_{T}}{Q}\right)\end{aligned}$$

TMD PDF within the b_* prescription

$$\mathbf{b}_{*}(\mathbf{b}_{T})\equiv rac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2}/b_{\max}^{2}}}.$$

Low- b_T : perturbative high- b_T : non-perturbative

$$\tilde{f}_{q/\mathcal{N}(A)}(x, b_T, \mu_Q, Q^2) = \underbrace{(C \otimes f)_{q/\mathcal{N}(A)}(x; b_*)}_{\times \exp\left\{-g_{q/\mathcal{N}(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0} - \underbrace{S(b_*, Q_0, Q, \mu_Q)}_{\otimes g_0}\right\}}$$

small- b_T to the collinear PDF \Rightarrow TMD is sensitive to collinear PDFs

Relates the TMD at

 $g_{q/\mathcal{N}(A)}$: intrinsic non-perturbative TMD structure of the hadron $\mathcal{N}(A)$ g_K : universal non-perturbative Collins-Soper kernel – same in all hadrons

• In this analysis, we use the MAP collaboration's parametrizations JHEP 10 (2022) 127

Controls the perturbative evolution of the TMD

A few details

Nuclear TMD model linear combination of bound protons and neutrons

$$\tilde{f}_{q/A}(x,b_T,\mu,\zeta) = \frac{Z}{A}\tilde{f}_{q/p/A}(x,b_T,\mu,\zeta) + \frac{A-Z}{A}\tilde{f}_{q/n/A}(x,b_T,\mu,\zeta)$$

• Include an additional A-dependent nuclear parameter

$$g_{q/N/A} = g_{q/N} \left(1 - a_N \left(A^{1/3} - 1 \right) \right)$$

Alrashed, et al., Phys. Rev. Lett **129**, 242001 (2022).

- Fit to fixed target pA and $\pi A q_T$ -dependent DY data and collinear π data
- We **simultaneously** fit: π and p TMDs, π collinear PDFs, CS kernel, and nuclear TMD parameter

Note about E615 πA Drell-Yan data

- Provides both $\frac{d\sigma}{dx_F d\sqrt{\tau}}$ (p_T -integrated) and $\frac{d\sigma}{dx_F dp_T}$ (p_T -dependent)
 - Large constraints on π collinear PDFs from p_T -integrated
 - Large constraints on π TMD PDFs from p_T -dependent
- Projections of same events \Rightarrow correlated measurements
- They have the **same luminosity** uncertainty, so they have the **same** overall **normalization** uncertainty
- To account for this, we *equate* the fitted normalizations of the two otherwise independent measurements
 - No other guidance from experiment how the uncertainties are correlated

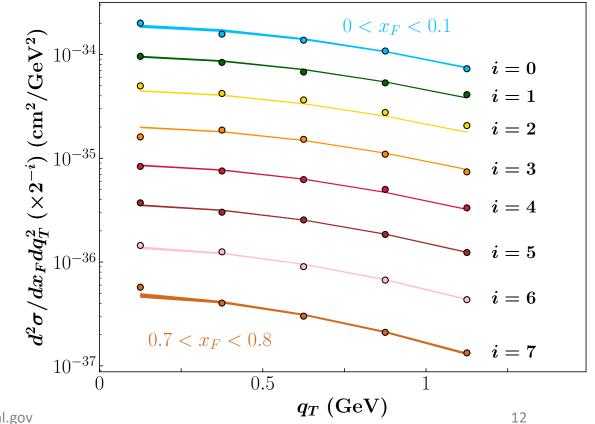
Note on collinear DY theory

- When equating the normalizations, we found
 - Tension when using NLO+NLL threshold resummed theory on the collinear observables
 - Agreement when using NLO theory on the collinear observables
- We note that in the OPE part of the TMD formalism, we use NLO accuracy
 - We do not use any *threshold enhancements* on the p_T -dependent observables

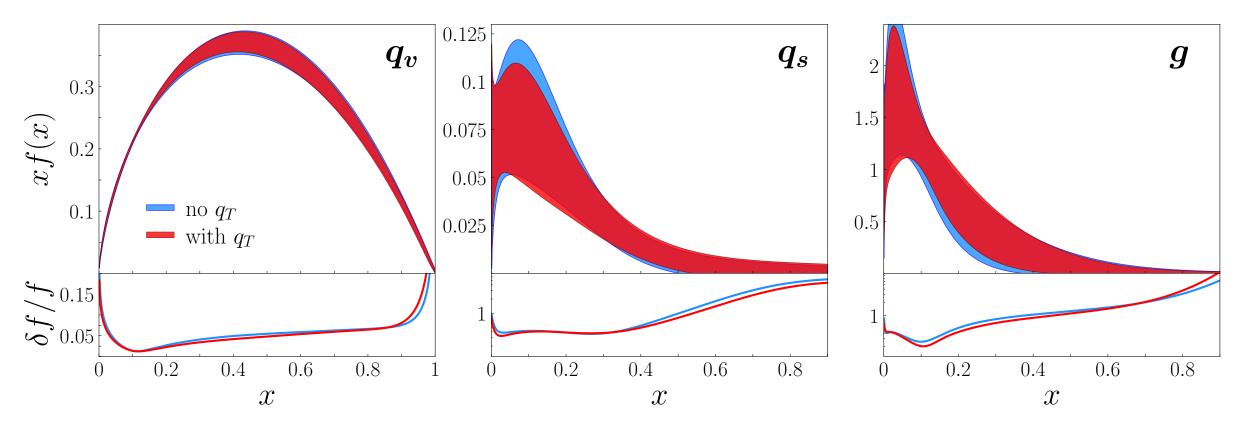
Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \; (\text{GeV})$	χ^2/N	Z-score
TMD				
q_T -dep. pA DY	E288 [90]	19.4	1.07	0.34
$pA \rightarrow \mu^+ \mu^- X$	E288 [<mark>90</mark>]	23.8	0.99	0.05
	E288 [<mark>90</mark>]	24.7	0.82	0.99
	E605 [<mark>91</mark>]	38.8	1.22	1.03
	E772 [<mark>92</mark>]	38.8	2.54	5.64
(Fe/Be)	E866 [<mark>93</mark>]	38.8	1.10	0.36
(W/Be)	E866 [<mark>93</mark>]	38.8	0.96	0.15
q_T -dep. πA DY	E615 [94]	21.8	1.45	1.85
$\pi W \to \mu^+ \mu^- X$	E537 [<mark>95</mark>]	15.3	0.97	0.03
collinear				
q_T -integr. DY	E615 [94]	21.8	0.90	0.48
$\pi W \to \mu^+ \mu^- X$	NA10 [<mark>96</mark>]	19.1	0.59	1.98
	NA10 [<mark>96</mark>]	23.2	0.92	0.16
leading neutron	H1 [97]	318.7	0.36	4.59
$ep \rightarrow enX$	ZEUS [98]	300.3	1.48	2.15
Total			1.12	1.86



Extracted pion PDFs

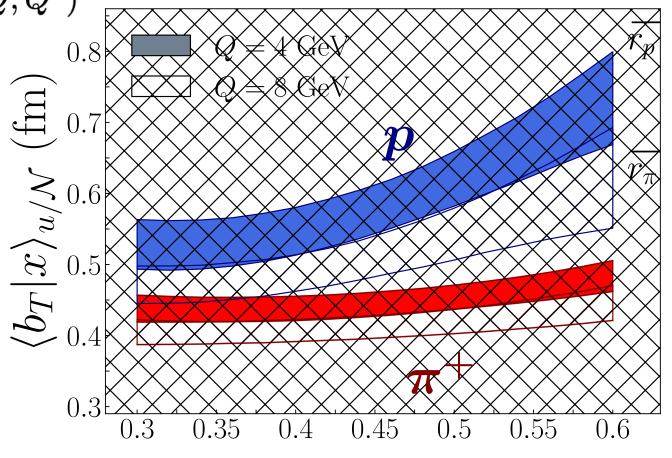


• The small- q_T data do not constrain much the PDFs

Resulting average
$$b_T$$

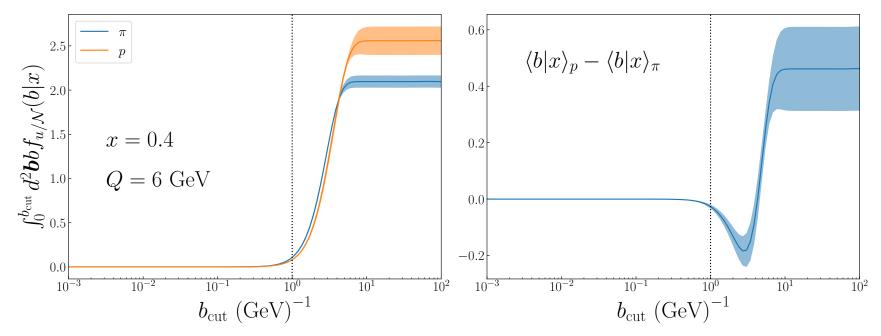
 $\langle b_T | x \rangle_{q/N} = \int d^2 b_T b_T \tilde{f}_{q/N}(b_T | x; Q, Q^2)$

- Average transverse spatial correlation of the up quark in proton is ~ 1.2 times bigger than that of pion
- Pion's $\langle b_T | x \rangle$ is $4 5.2\sigma$ smaller than proton in this range
- Decreases as x decreases



 \mathcal{X}

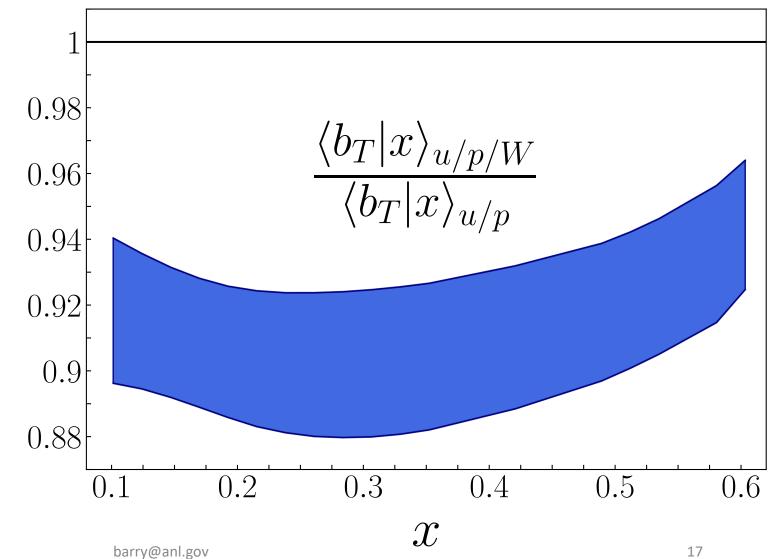
Emphasis on nonperturbative effects



- The $\langle b_T | x \rangle$ grows appreciably in the large- b_T region
- Saturation well beyond a perturbative scale
- Differences between proton and pion are in the nonperturbative region

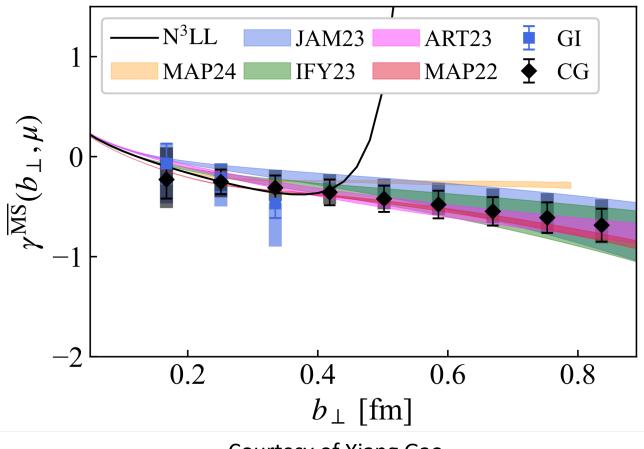
Transverse EMC effect

- Compare the average b_T given x for the up quark in the bound proton to that of the free proton
- Less than 1 by
 ~ 5 12% over the
 x range



CS kernel

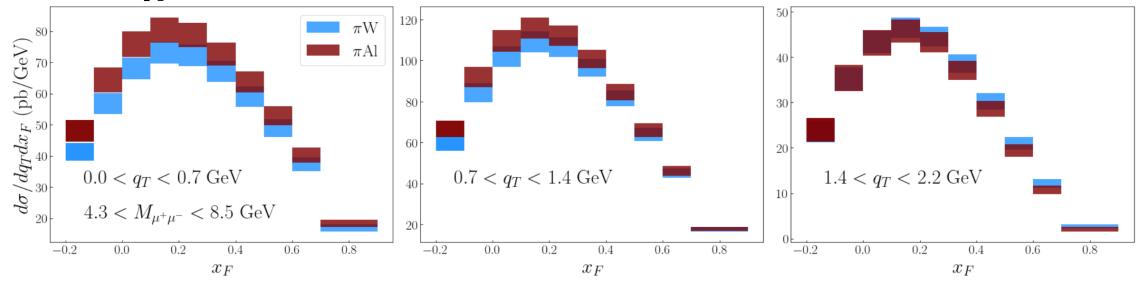
- Agreement with other phenomenological analyses, but with larger errors
- Good agreement with recent lattice data Phys. Lett. B 852, 138617 (2024)



Courtesy of Xiang Gao

Predictions for COMPASS: tungsten and aluminum targets

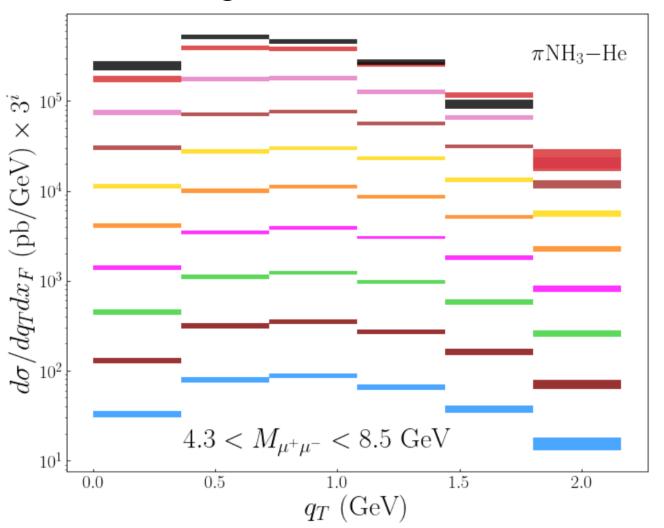
• Integrated over the *M* range, and bin averaged in x_F (horizontal axis) and q_T (panels)



• The π Al spectrum appears wider in q_T -space, consistent with the transverse EMC effect

Predictions for COMPASS: NH₃-He target

- Each color represents a different x_F bin (smallest x_F at the bottom)
- Much more finely binned in q_T than heavier nuclei!
- It should be noted that this is still a projection onto (q_T, x_F) and the triply differential measurement will be very useful



Takeaways and Outlook

- Pions and protons have significantly different nonperturbative TMD structure as evidenced from the low-energy data
- High energy data from the TeVatron and LHC provide further constraints on the proton TMDs and potentially collinear PDFs
- In order to fully trust the entire q_T spectrum, we should work towards including the full W + Y theory

Backup

MAP parametrization

• The MAP collaboration (JHEP 10 (2022) 127) used the following form for the non-perturbative function

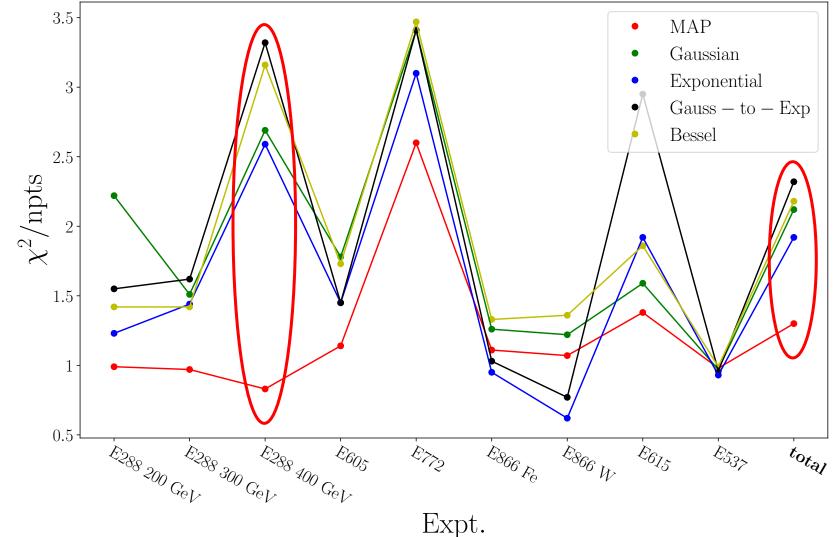
$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x) \frac{\boldsymbol{b}_{T}^{2}}{4}} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}}{g_{K}(\boldsymbol{b}_{T}^{2}) = -g_{2}^{2} \frac{\boldsymbol{b}_{T}^{2}}{2}} \left[\frac{\zeta}{\zeta}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2}$$

• 11 free parameters for each hadron (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

Resulting χ^2 for each parametrization

 Tried multiple parametrizations for nonperturbative TMD structures

MAP
 parametrization
 is able to
 describe better
 all the datasets



Bayesian Inference

• Minimize the
$$\chi^2$$
 for each replica

$$\chi^2(\boldsymbol{a}, \text{data}) = \sum_e \left(\sum_i \left[\frac{d_i^e - \sum_k r_k^e \beta_{k,i}^e - t_i^e(\boldsymbol{a}) / n_e}{\alpha_i^e} \right]^2 + \left(\frac{1 - n_e}{\delta n_e} \right)^2 + \sum_k \left(r_k^e \right)^2 \right)$$

• Perform N total χ^2 minimizations and compute statistical quantities

Expectation value
$$\mathrm{E}[\mathcal{O}] = \frac{1}{N} \sum_k \mathcal{O}(\boldsymbol{a}_k),$$
Variance
 $\mathrm{V}[\mathcal{O}] = \frac{1}{N} \sum_k \left[\mathcal{O}(\boldsymbol{a}_k) - \mathrm{E}[\mathcal{O}]\right]^2,$

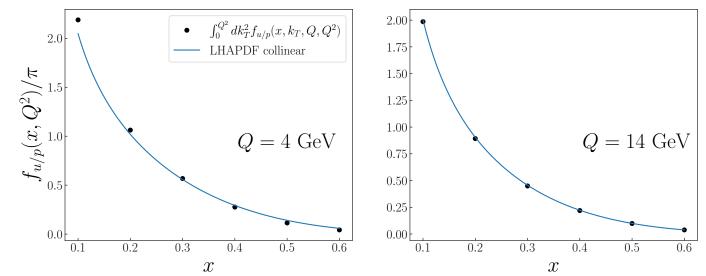
Correlations

- Level at which the distributions are correlated with each other
- Different distributions are largely correlated only within themselves



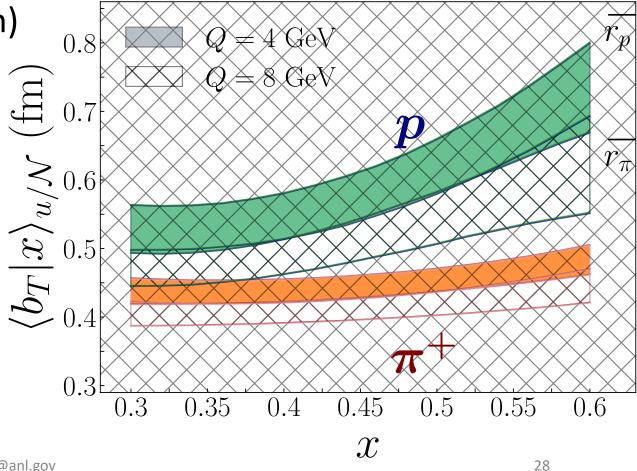
Collinear relation

- The TMD formalism requires that the integral over k_T^2 of the TMD gives the collinear PDF up to higher order corrections
- We demonstrate this for example in the proton case
- At larger Q, the power corrections are less important



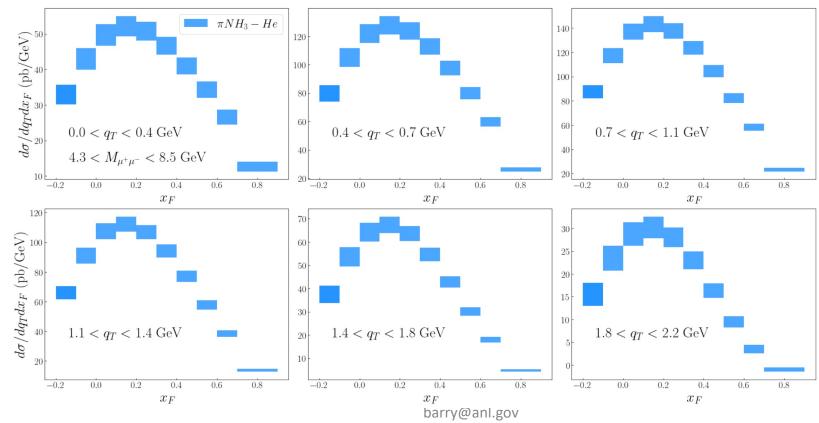
Emphasis on nonperturbative effects

- We vary the collinear PDFs $p: CT14nlo (blue) \rightarrow MMHT14 (green)$ $\pi: JAM (red) \rightarrow xFitter (orange)$
- No change in the quantity!



Predictions for COMPASS: NH₃-He target

 Used a weighted average of N, H, and He parton distributions in the Drell-Yan formalism



Light nuclei from spin average polarised target: mixture of **NH**₃ & **LHe**: molar fraction of nucleons: <u>H He N</u> <u>15.7% 11.1% 73.2%</u>

V. Andrieux from SPIN 2023