Twist-3 contribution to deeply virtual electroduction of pions

Kornelija Passek-K.

Rudjer Bošković Institute, Croatia

Transversity 2024, June 7, 2024

• Wide angle meson production at twist-3

[Kroll, P-K. '18, '21]

• Deeply virtual π^0 production at twist 3

[Duplančić, Kroll, P-K., Szymanowski '24]

Generalized Parton Distributions

- vector (H^a, E^a) and axial-vector GPDs $(\tilde{H}^a, \tilde{E}^a)$ \rightarrow chiral-even $\mathcal{O}^q = \bar{q}(z)\gamma^+(\gamma^+\gamma_5)q(-z)$
- transversity GPDs $(H_T^a, E_T^a, \widetilde{H}_T^a, \widetilde{E}_T^a)$ $\rightarrow \text{chiral-odd}$ $\mathcal{O}^q = \bar{q}(z)i\sigma^{+i}q(-z)$

$$H^a$$
, \widetilde{H}^a , $H^q_T \stackrel{\xi=0,t=0}{\longrightarrow} \mathsf{PDFs}$

3 / 19

GPDs from deeply virtual exclusive processes

GPDs from deeply virtual exclusive processes

Meson production: handbag factorization

WIDE ANGLE $-t, -u, s \gg, Q^2 \ll \text{ or } 0$

- DVMP [Collins, Frankfurt, Strikman '97]
 - factorization $\mathcal{H}^a \otimes GPD$
 - GPDs at small (-t)

WAMP [Huang, Kroll '00]

• arguments for factorization $\mathcal{H}^{a}(1/x \otimes GPD(\xi = 0))$

• GPDs at large
$$(-t)$$

 \mathcal{H}^a ... parton subprocess helicity amplitudes $\Rightarrow \mathcal{M}$... hadron helicity amplitudes \Rightarrow observables (cross sections, asymmetries)

Meson production: handbag factorization

DEEPLY VIRTUAL $Q^2 \gg$, $-t \ll$

WIDE ANGLE $-t, -u, s \gg, Q^2 \ll \text{ or } 0$

DVMP [Collins, Frankfurt, Strikman '97]

- factorization $\mathcal{H}^a \otimes GPD$
- GPDs at small (-t)
- tw2: γ_L^* , tw3: γ_T^*

WAMP [Huang, Kroll '00]

• arguments for factorization $\mathcal{H}^{a}(1/x \otimes GPD(\xi = 0))$

• GPDs at large
$$(-t)$$

large scale Q^2 (Q^2 , -t, s, ...)

• twist expansion: $\langle \mathcal{H} \rangle^{tw2} + \frac{\langle \mathcal{H} \rangle^{tw3}}{\mathcal{Q}} + \dots$

• α_S expansion for each twist: $\alpha_S(\mathcal{Q}) \langle \mathcal{H} \rangle^{LO} + \alpha_S^2(\mathcal{Q}) \langle \mathcal{H} \rangle^{NLO}$

- DV (V_L) P:
 - $\bullet\,$ data show dominance of γ_L^* contributions

 \Rightarrow twist-2 predictions can describe the data

• tw2 NLO corrections large

 \Rightarrow global DIS+DVCS+DV V_L P fits at NLO [Čuić, Duplančić, Kumerički, P-K. '23]

- DV (V_L) P:
 - $\bullet\,$ data show dominance of γ_L^* contributions

 \Rightarrow twist-2 predictions can describe the data

• tw2 NLO corrections large

 \Rightarrow global DIS+DVCS+DV V_L P fits at NLO [Čuić, Duplančić, Kumerički, P-K. '23]

- DVπP:
 - $\bullet\,$ data show suppression of γ_L^* contributions

 $\Rightarrow \gamma_T^*$ contributions with quark transversity GPDs and 2-body twist-3 ($\pi=q\bar{q})$ approximation (WW) [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]

- DV (V_L) P:
 - $\bullet\,$ data show dominance of γ_L^* contributions
 - \Rightarrow twist-2 predictions can describe the data
 - tw2 NLO corrections large

 \Rightarrow global DIS+DVCS+DV V_L P fits at NLO [Čuić, Duplančić, Kumerički, P-K. '23]

- DVπP:
 - $\bullet\,$ data show suppression of γ_L^* contributions

 $\Rightarrow \gamma_T^*$ contributions with quark transversity GPDs and 2-body twist-3

 $(\pi=qar{q})$ approximation (WW) [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]

- WAπP:
 - twist-2 results bellow the data for photoproduction
 - & 2-body twist-3 contributions vanish
 - \Rightarrow 3-body tw3 contributions ($\pi=q\bar{q}g)$ determined
 - \Rightarrow tw3 pion DA from photoproduction fits $_{\rm [Kroll, P-K. 18', '21]}$

- DV (V_L) P:
 - \bullet data show dominance of γ_L^* contributions
 - \Rightarrow twist-2 predictions can describe the data
 - tw2 NLO corrections large

 \Rightarrow global DIS+DVCS+DV V_L P fits at NLO [čuić, Duplančić, Kumerički, P-K. '23]

- DVπP:
 - data show suppression of γ_L^\ast contributions
 - $\Rightarrow \gamma_T^*$ contributions with quark transversity GPDs and 2-body twist-3
 - $(\pi=qar{q})$ approximation (WW) [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]
 - full (2- and 3-body) twist-3 contributions confronted with data [Duplančić, Kroll, P-K., Szymanowski '24]
- WAπP:
 - twist-2 results bellow the data for photoproduction
 - & 2-body twist-3 contributions vanish
 - \Rightarrow 3-body tw3 contributions ($\pi=q\bar{q}g)$ determined
 - \Rightarrow tw3 pion DA from photoproduction fits $_{[{\rm Kroll}, \mbox{ P-K. 18', '21]}}$

$DV\pi P$ at twist-3

π production to twist-3

 μ photon helicity, $\lambda \dots$ quark helicities $\mathcal{H}_{0\lambda,\mu\lambda}^{\pi}$... non-flip subprocess amplitudes (twist-2) $\overset{+}{\overbrace{H}} \widetilde{E}$ GPD $\mathcal{H}_{0-\lambda,\mu\lambda}^{\pi}$... flip subprocess amplitudes (twist-3) $| \sim \mu_{\pi}/Q$ GPD T GPD- H_{T} , $\bar{E}_{T} = 2\tilde{H}_{T} + E_{T}$, \rightarrow just pion DA tw-3 contributions $\Leftarrow \mu_{\pi} = m_{\pi}^2/(m_u + m_d) \cong 2 \text{ GeV}$ (see S. Bhattacharya talk) distribution amplitudes (DAs): twist-2 $(q\bar{q})$: ϕ_{π} 2-body $(q\bar{q})$ twist-3 $\phi_{\pi p}$, $\phi_{\pi \sigma}$ 3-body $(q\bar{q}g)$ twist-3 $\phi_{3\pi}$ \rightarrow connected by equations of motion (EOMs) 8 / 19

$$\mathcal{H}^{\pi,tw3} = \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g}$$

$$= (\mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{\pi}^{EOM}}) + (\mathcal{H}^{\pi,q\bar{q}g,C_{F}} + \mathcal{H}^{\pi,q\bar{q}g,C_{G}})$$

$$= \mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}}$$

• 2- and 3-body contributions necessary for gauge invariance

$$\mathcal{H}^{\pi,tw3} = \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g}$$

$$= (\mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{\pi}^{EOM}}) + (\mathcal{H}^{\pi,q\bar{q}g,C_{F}} + \mathcal{H}^{\pi,q\bar{q}g,C_{G}})$$

$$= \mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}}$$

- 2- and 3-body contributions necessary for gauge invariance
- WAMP:
 - photoproduction ($Q \rightarrow 0$): $\mathcal{H}^{\pi,\phi_{\pi p}} = 0$
 - no end-point singularities

$$\mathcal{H}^{\pi,tw3} = \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g}$$

$$= \left(\mathcal{H}^{\pi,\phi_{\pi p}} + \underbrace{\mathcal{H}^{\pi,\phi_{\pi}^{EOM}}}_{}\right) + \left(\mathcal{H}^{\pi,q\bar{q}g,C_{F}} + \mathcal{H}^{\pi,q\bar{q}g,C_{G}}\right)$$

$$= \mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}}$$

- 2- and 3-body contributions necessary for gauge invariance
- WAMP:
 - photoproduction $(Q \to 0)$: $\mathcal{H}^{\pi,\phi_{\pi p}} = 0$
 - no end-point singularities
- DVMP ($t \rightarrow 0$):
 - end-point singularities in $\mathcal{H}^{\pi,\phi_{\pi p}}$:

$$\int_0^1 \frac{d\tau}{\tau} \phi_{\pi p}(\tau) \, \frac{1}{\left(x+\xi+i\epsilon\right)^2} \stackrel{x}{\otimes} H_T(\bar{E}_T)$$

$$\phi_{\pi p}(\tau) = 1 + \omega_{\pi p} C_2^{1/2} (2\tau - 1) + \dots$$

 τ ... quark long. momentum fraction in π

Treatment of end-point singularities: MPA

⇒ Modified perturbative approach (MPA) [Goloskov, Kroll, '10]

•
$$k_{\perp}$$
 quark transverse momenta in pion

$$\frac{1}{((x+\xi)\tau - k_T^2/Q^2(2\xi) + i\epsilon)} \frac{1}{(x+\xi+i\epsilon)}$$
• $\phi_{\pi} \rightarrow \text{light-cone wave function } \Psi_{\pi} \sim \phi_{\pi} \exp\left[-a_{\pi}^2 k_{\perp}^2\right]$
• $\int_0^1 d\tau \quad \rightarrow \int d^2 \mathbf{k}_T \int_0^1 d\tau \quad \stackrel{\text{FT}}{\rightarrow} \int d^2 \mathbf{b} \int_0^1 d\tau$
• Sudakov form factor $\exp\left[-S(\tau, \mathbf{b}, Q^2)\right]$

consistently treated 2- and 3-body tw3 contributions, as well as tw2

- involved multidimensional integrations
- complicated calculation of NLO corrections

Treatment of end-point singularities: m_q^2

 \Rightarrow pure collinear picture with effective gluon mass m_q^2

[Schwinger '62, Cornwall '82, ..., Shuryak, Zahed '21]

$$\int_0^1 d\tau \phi_{\pi p}(\tau) \frac{1}{((x+\xi)\tau - m_g^2/Q^2(2\xi) + i\epsilon)} \frac{1}{(x-\xi+i\epsilon)} \overset{x}{\otimes} H_T(\bar{E}_T)$$

$$m_g^2(Q^2) = rac{m_0^2}{1+(Q^2/M^2)^{1+p}}$$
 [Aguilar, Binosi, Papavassiliou '14] $m_a^2(0) = 0.01~{
m GeV}^2$

- proof of concept
- suitable for faster fitting
- easier determination of NLO corrections (already available for tw2)

Soft physics input

GPDs

- double distribution representation [Müller '94, Radyushkin '99], weight function $w_j^a \rightarrow$ generates ξ dependence double-distribution integral analytically evaluated [Goloskokov, Kroll '08]
- zero-skewness GPD: $K_j^a(x,\xi=0,t) = k_j^a(x) \exp\left[\left(b_j^a {\alpha'}_j^a \ln x\right)t\right]$
 - *H*: $k_j^a(x)$ from PDFs (q, Δq , δq), *E*: $k_j^a(x) = N_j^a x^{-\alpha_j^a(0)} (1-x)^{\beta_j^a}$
- { N^a_j , b^a_j , ${\alpha'}^a_j$, ${\alpha^a_j}(0)$, ${\beta^a_j}$ } parameters
- moments of H_T and \bar{E}_T compared to lattice results

DAs

$$\begin{split} \phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F) &= 360\tau_a \tau_b \tau_g^2 \Big[1 + \omega_{1,0}(\mu_F) \frac{1}{2} (7\tau_g - 3) \\ &+ \omega_{2,0}(\mu_F) \left(2 - 4\tau_a \tau_b - 8\tau_g + 8\tau_g^2 \right) \\ &+ \omega_{1,1}(\mu_F) \left(3\tau_a \tau_b - 2\tau_g + 3\tau_g^2 \right) \Big] \text{[Braun, Filyanov '90]} \end{split}$$

 $ightarrow \phi_{\pi p}$ using EOMs [Kroll, P-K '18]

evolution taken into account

12 / 19

Results from photoproduction (π)

• complete tw-3 prediction for π_0 photoproduction fitted to CLAS data

 $\Rightarrow \phi_{3\pi}$ coefficients $\omega_{1,0}$, $\omega_{2,0}$, $\omega_{1,1}$ (set2)

solid curve: set1 (DV π^0 P) dashed curve: set2

exp data: full circles [CLAS '18]

Modified perturbative approach (MPA): $d\sigma_{TT}$

CLAS KPK $d\sigma_{TT}/dt$ $[nb/GeV^2]$ O^2 $= 3.67 \text{GeV}^2$ $x_B = 0.45$ 0.2 0.4 0.6 0.8 1.0 -t' [GeV²] COMPASS $d\sigma_{TT}/dt$ [nb/GeV²] $= 2.0 \, \text{GeV}^2$ $x_B = 0.093$ WW KPK

0.4 0.6 0.8 1.0

-t' [GeV²]

solid curves: set1

dashed curves: set2, WW

exp data: full circles [CLAS '14] triangles [Hall A '20]

$$\frac{d\sigma_{TT}}{dt}: \bar{E}_T, \quad \left|\frac{d\sigma_{TT}}{dt}\right| \le \frac{d\sigma_T}{dt}$$

- $\bullet \ d\sigma_{TT} \ {\rm large}$
- good description with set1
- strong dependence on DA

Modified perturbative approach (MPA): $d\sigma_U$

Collinear approach with m_g^2 : $d\sigma_{TT}$

Collinear approach with m_a^2 : $d\sigma_U$

blue curves: tw3 exp data: full circles [CLAS '14]

open circles [COMPASS '19]

• tw2 (σ_L) significant for COMPASS kinematics (small x_B) • Q^2 dependence challenging

Collinear approach with m_q^2

illustration: approximate factorization of x and τ integration $\Rightarrow \tau$ integrals:

• 3-body contributions smaller but influence the Q^2 behaviour

Concluding remarks

- 3-body twist-3 contributions:
 - important for gauge invariance
 - smaller than 2-body contributions
 - change 2-body twist-3 DA, and thus 2-body tw3 contributions, through EOM
- Improved twist-3 analysis shows twist-3 dominates in $DV\pi^0P$ at accessible energies, except for COMPASS kinematics (small xB).
- NLO corrections to twist-2 may be important for COMPASS kinematics.
- Wide-angle meson production also dominated by twist-3 and provides complementary information on pion DA and GPDs at large-t.
- Next steps: GPD fits (MPA and collinear), DA fits or both

Concluding remarks

- 3-body twist-3 contributions:
 - important for gauge invariance
 - smaller than 2-body contributions
 - change 2-body twist-3 DA, and thus 2-body tw3 contributions, through EOM
- Improved twist-3 analysis shows twist-3 dominates in $DV\pi^0P$ at accessible energies, except for COMPASS kinematics (small xB).
- NLO corrections to twist-2 may be important for COMPASS kinematics.
- Wide-angle meson production also dominated by twist-3 and provides complementary information on pion DA and GPDs at large-t.
- Next steps: GPD fits (MPA and collinear), DA fits or both

Thank you.

Subprocess amplitudes \mathcal{H} : projectors

$$\begin{split} q\bar{q} \rightarrow \pi \mbox{ projector } & \mbox{[Beneke, Feldmann '00]} \\ & (\tau q' + k_{\perp}) + (\bar{\tau}q' - k_{\perp}) = q' \\ \mathcal{P}_2^{\pi} & \sim & f_{\pi} \left\{ \gamma_5 \, q' \phi_{\pi}(\tau, \mu_F) \\ & + \mu_{\pi}(\mu_F) \Big[\gamma_5 \, \phi_{\pi p}(\tau, \mu_F) \\ & - \frac{i}{6} \, \gamma_5 \, \sigma_{\mu\nu} \, \frac{q'^{\mu} n^{\nu}}{q' \cdot n} \, \phi'_{\pi \sigma}(\tau, \mu_F) \\ & + \frac{i}{6} \, \gamma_5 \, \sigma_{\mu\nu} \, q'^{\mu} \phi_{\pi \sigma}(\tau, \mu_F) \frac{\partial}{\partial k_{\perp \nu}} \Big] \right\}_{k_{\perp} \rightarrow 0} \end{split}$$

$$\begin{split} q\bar{q}g &\rightarrow \pi \text{ projector} & \text{[Kroll, P-K '18]} \\ \tau_a q' + \tau_b q' + \tau_g q' = q' \\ \mathcal{P}_3^{\pi} &\sim f_{3\pi}(\mu_F) \, \frac{i}{g} \, \gamma_5 \, \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu\rho} \, \frac{\phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)}{\tau_g} \,, \quad f_{3\pi} \sim \mu_\tau \end{split}$$

 $\mu_{\pi}=m_{\pi}^2/(m_u+m_d)\cong 2~{\rm GeV}$

DAs and EOMs

$$\tau \phi_{\pi p}(\tau) + \frac{\tau}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) = \phi_{\pi}^{EOM}(\bar{\tau})$$
$$\bar{\tau} \phi_{\pi p}(\tau) - \frac{\bar{\tau}}{6} \phi_{\pi \sigma}'(\tau) - \frac{1}{3} \phi_{\pi \sigma}(\tau) = \phi_{\pi}^{EOM}(\tau)$$

$$\phi_{\pi}^{EOM}(\tau) = 2 \frac{f_{3\pi}}{f_{\pi}\mu_{\pi}} \int_0^{\bar{\tau}} \frac{d\tau_g}{\tau_g} \phi_{3\pi}(\tau, \bar{\tau} - \tau_g, \tau_g)$$

- EOMs and symmetry properties
 ⇒ the subprocess amplitudes in terms of two twist-3 DAs and 2- and 3-body contributions combined
- combined EOMs \rightarrow first order differential equation \Rightarrow from known form of $\phi_{3\pi}$ [Braun, Filyanov '90] one determines $\phi_{\pi p}$ (and $\phi_{\pi \sigma}$)

Note: $q\bar{q}g$ projector and EOMs were derived using light-cone gauge for constituent gluon

General structure:

$$\mathcal{H}^{\pi,tw3} = \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g}$$

$$= \left(\mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{\pi}^{EOM}}\right) + \left(\mathcal{H}^{\pi,q\bar{q}g,C_{F}}\right) + \mathcal{H}^{\pi,q\bar{q}g,C_{G}} \right)$$

$$= \mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}}$$

• 2- and 3-body contributions necessary for gauge invariance

• WAMP

- photoproduction ($Q \rightarrow 0$): $\mathcal{H}^{\pi,\phi_{\pi p}} = 0$
- no end-point singularities for $\hat{t} \neq 0$!

General structure:

$$\mathcal{H}^{\pi,tw3} = \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g}$$

= $(\mathcal{H}^{\pi,\phi_{\pi_{P}}} + \mathcal{H}^{\pi,\phi_{\pi}^{EOM}}) + (\mathcal{H}^{\pi,q\bar{q}g,C_{F}} + \mathcal{H}^{\pi,q\bar{q}g,C_{G}})$
= $\mathcal{H}^{\pi,\phi_{\pi_{P}}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}}$

• 2- and 3-body contributions necessary for gauge invariance

- DVMP ($\hat{t} \rightarrow 0$):
 - end-point singularities in $\mathcal{H}^{\pi,\phi_{\pi p}}$

•
$$\mathcal{H}^{\pi,\phi_{\pi}^{EOM}} = 0$$

۲

$$\begin{aligned} \mathcal{H}^{\pi,tw3} &= \mathcal{H}^{\pi,tw3,q\bar{q}} + \mathcal{H}^{\pi,tw3,q\bar{q}g} \\ &= \left(\mathcal{H}^{\pi,\phi_{\pi p}} + \underbrace{\mathcal{H}^{\pi,\phi_{\pi}}}_{\mathbb{C}^{G}}\right) + \left(\mathcal{H}^{\pi,q\bar{q}g,C_{F}}\right) + \mathcal{H}^{\pi,q\bar{q}g,C_{G}}\right) \\ &= \mathcal{H}^{\pi,\phi_{\pi p}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{F}} + \mathcal{H}^{\pi,\phi_{3\pi},C_{G}} \end{aligned}$$
$$\begin{aligned} \mathsf{DVMP} \ (\hat{t} \to 0): \ \hat{s} &= -\frac{\xi-x}{2\xi} \ Q^{2}, \hat{u} &= -\frac{\xi+x}{2\xi} \ Q^{2} \\ \mathcal{H}^{\pi,\phi_{\pi p}}_{0-\lambda,\mu\lambda} &\sim (2\lambda+\mu) \ f_{\pi}\mu_{\pi}C_{F}\alpha_{S}(\mu_{R}) \left(\frac{e_{a}}{\hat{s}^{2}} + \frac{e_{b}}{\hat{u}^{2}}\right) \left[\int_{0}^{1} \frac{d\tau}{\bar{\tau}} \phi_{\pi p}(\tau) \right] \\ \mathcal{H}^{\pi,\phi_{3\pi},C_{F}}_{0-\lambda,\mu\lambda} &\sim -(2\lambda+\mu) \ f_{3\pi} \ C_{F}\alpha_{S}(\mu_{R}) \left(\frac{e_{a}}{\hat{s}^{2}} + \frac{e_{b}}{\hat{u}^{2}}\right) \\ &\times \left[\int_{0}^{1} \frac{d\tau}{\bar{\tau}^{2}} \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \ \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \right] \\ \mathcal{H}^{P,\phi_{3\pi},C_{G}}_{0-\lambda,\mu\lambda} &\sim -(2\lambda+\mu) \ f_{3\pi} \ C_{G}\alpha_{S}(\mu_{R}) \left(\frac{e_{a}}{\hat{s}^{2}} + \frac{e_{b}}{\hat{u}^{2}} + \frac{e_{a}+e_{b}}{\hat{s}\hat{u}} \right) \\ &\times \left[\int_{0}^{1} \frac{d\tau}{\bar{\tau}} \ \int_{0}^{\bar{\tau}} \frac{d\tau_{g}}{\tau_{g}(\bar{\tau}-\tau_{g})} \ \phi_{3\pi}(\tau,\bar{\tau}-\tau_{g},\tau_{g}) \right] \end{aligned}$$

Pion distribution amplitudes

Twist-2 DA:
$$\phi_{\pi}(\tau, \mu_F) = 6\tau \bar{\tau} \left[1 + a_2(\mu_F) C_2^{3/2}(2\tau - 1) \right]$$

Twist-3 DAs:

$$\begin{split} \phi_{3\pi}(\tau_a,\tau_b,\tau_g,\mu_F) &= & 360\tau_a\tau_b\tau_g^2 \Big[1 + \omega_{1,0}(\mu_F) \, \frac{1}{2} (7\tau_g - 3) \\ &+ \omega_{2,0}(\mu_F) \, (2 - 4\tau_a\tau_b - 8\tau_g + 8\tau_g^2) \\ &+ \omega_{1,1}(\mu_F) \, (3\tau_a\tau_b - 2\tau_g + 3\tau_g^2) \Big] \text{[Braun, Filyanov '90]} \end{split}$$

using EOMs [Kroll, P-K '18]:

$$\begin{split} \phi_{\pi p}(\tau,\mu_F) &= 1 + \frac{1}{7} \frac{f_{3\pi}(\mu_F)}{f_{\pi}\mu_{\pi}(\mu_F)} \Big(7\,\omega_{1,0}(\mu_F) - 2\,\omega_{2,0}(\mu_F) - \omega_{1,1}(\mu_F) \Big) \\ &\times \Big(10\,C_2^{1/2}(2\tau - 1) - 3\,C_4^{1/2}(2\tau - 1) \Big) \,, \quad \phi_{\pi\sigma}(\tau) = \dots \end{split}$$

Parameters:

•
$$a_2(\mu_0) = 0.1364 \pm 0.0213$$
 at $\mu_0 = 2$ GeV [Braun et al '15] (lattice)

•
$$\omega_{10}(\mu_0)=-2.55\,,\omega_{10}(\mu_0)=0.0$$
 and $f_{3\pi}(\mu_0)=0.004~{
m GeV}^2$. [Ball '99]

• $\omega_{20}(\mu_0)=8.0$ [Kroll, P-K '18] fit to π^0 photoproduction data [CLAS '17]

Evolution of the decay constants and DA parameters taken into account.

Form factors and GPDs at large t

 $R_i \ldots 1/x$ moment of $\xi = 0$ GPD (K_i)

- $R_V(\leftarrow H)$, $R_T(\leftarrow E)$ from nucleon form factor analysis [Diehl, Kroll '13]
- $R_A(\leftarrow \tilde{H})$ form factor analysis and WACS KLL asymmetry [Kroll '17]
- $S_T(\leftarrow H_T)$, $\bar{S}_T(\leftarrow \bar{E}_T)$ low -t from DVMP analysis [Goloskokov, Kroll '11]

•
$$S_S(\leftarrow \tilde{H}_T) \cong \bar{S}_T/2 \ (\bar{E}_T = 2\tilde{H}_T + E_T)$$

GPD parameterization [Diehl, Feldmann, Jakob, Kroll '04, Diehl, Kroll '13]

$$K_j^a(x,\xi = 0,t) = k_j^a(x) \exp\left[t f_j^a(x)\right]$$
$$f_j^a(x) = \left(B_j^a - \alpha_i'^a \ln x\right)(1-x)^3 + A_j^a x(1-x)^2$$

- strong x t correlation
- power behaviour for large (-t)
- choice for transversity GPDs $A = 0.5 \text{ GeV}^{-2}$

Parameterization of GPDs at small t

double distribution representation [Müller '94, Radyushkin '99]

$$K_{j}^{a}(x,\xi,t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \ \delta(\rho+\xi\eta-x) K_{j}^{a}(\rho,\xi=0,t) w_{j}^{a}(\rho,\eta)$$

• weight function $w_j^a \to \text{generates } \xi$ dependence

• zero-skewness GPD:

 $K_{j}^{a}(x,\xi=0,t) = k_{j}^{a}(x) \exp \left[(b_{j}^{a} - \alpha'_{j}^{a} \ln x) t \right]$

• H - GPDs: $k_j^a(x)$ from PDFs $(q, \Delta q, \delta q)$

•
$$E$$
 - GPDs: $k^a_j(x) = N^a_j x^{-\alpha^a_j(0)} (1-x)^{\beta^a_j}$

• double-distribution integral analytically evaluated [Goloskokov, Kroll '08]

Parameters:

• {
$$N_j^a$$
, b_j^a , α'_j^a , $\alpha_j^a(0)$, β_j^a }

[Goloskokov, Kroll '11, '14] [Duplančić, Kroll, P-K., Szymanowski '24]

• moments of H_T and \bar{E}_T compared to lattice results

Parameterization of GPDs at small t

 $\mu_0=2\,\,{\rm GeV}$

Photoproduction (π)

• complete tw-3 prediction for π_0 photoproduction fitted to CLAS data and obtained predictions for π^{\pm}

twist-2 prediction well below the data

Spin effects - photoproduction

 $A_{LL}(K_{LL})\ldots$ correlation of the helicities of the photon and incoming (outgoing) nucleon

$$A_{LL}^{P,tw2} = K_{LL}^{P,tw2}$$
$$A_{LL}^{P,tw3} = -K_{LL}^{P,tw3}$$

 \rightarrow characteristic signature for dominance of twist-3 (like $\sigma_T\gg\sigma_L$ in DVMP)

Cross-sections

$$\frac{d^{4}\sigma}{dW^{2}dQ^{2}dtd\varphi} = \frac{\alpha_{em}(W^{2} - m_{N}^{2})}{16\pi^{2}E_{L}^{2}m_{N}^{2}Q^{2}(1 - \varepsilon)} \left(\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \varepsilon \cos\left(2\varphi\right)\frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1 + \varepsilon)}\cos\varphi\frac{d\sigma_{LT}}{dt}\right)$$
$$\frac{d\sigma_{U}}{dt} = \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt}$$

$$\frac{d\sigma_L}{dt}: \widetilde{H}, \widetilde{E} \qquad \frac{d\sigma_T}{dt}: H_T, \bar{E}_T \qquad \frac{d\sigma_{TT}}{dt}: \bar{E}_T \qquad \frac{d\sigma_{LT}}{dt}: \widetilde{E}, H_T$$

$$\left|\frac{d\sigma_{TT}}{dt}\right| \le \frac{d\sigma_T}{dt}$$