Exclusive Mesons Production with CLAS12 At Jefferson Lab

Kyungseon Joo

University of Connecticut

June 7, 2024

UCONN | UNIVERSITY OF

Generalized Parton Distributions (GPDs)

Study GPDs: Deeply Exclusive Processes

Deeply Virtual Meson Production

	Meson	Flavor
	π^+	$\Delta u - \Delta d$
${}^{\mathcal{H}}\mathbf{\tau}, {}^{\mathcal{E}}\mathbf{\tau}$ \widetilde{H} , \widetilde{E}	π0	$2\Delta u + \Delta d$
	η	$2\Delta u - \Delta d + 2\Delta s$
Н,Е	$ ho^+$	u-d
	ρ	2u + d
	ω	2u - d
	φ	g

 $\ensuremath{\mathsf{H}_{\mathsf{T}}}$ is related to the protons tensor charge

$$\delta_T^{u,d} = \int dx H_T^{u,d}(x,\xi=0,t=0)$$

- ➔ Absolute magnitude of transversly polarized valence quarks inside a transv. polarized nucleon
 - \overline{E}_{T} is related to the protons anomalous tensor magnetic moment

$$k_T^{u,d} = \int dx \bar{E}_T^{u,d}(x,\xi=0,t=0)$$

 $\overline{E}_T = 2\widetilde{H}_T + E_T$

CLAS12 at JLAB

V. Burkert et al., Nucl. Instr. Meth. A 959, 163419 (2020)

- → Data recorded with CLAS12 during fall 2018 and spring 2019 (RG-A)
 - ➔ 10.6 GeV / 10.2 GeV electron beam ~ 86 % average polarization
 - ➔ liquid H₂ target

Differential Cross Section of DVMP (π^0)

Unpolarized π^0 Cross Section and Theory Predictions

2 theoretical models:

Goloskokov, Kroll (GK) Eur. Phys. J. A. 47: 112 (2011) \rightarrow Chiral odd GPDs parameterized using latest results from lattice QCD and transversity parton distribution functions with emphasis on H_T and \bar{E}_T .

Goldstein, Hernandez, Liuti (GGL) Phys. Rev. D 84, 034007 (2011) → Chiral odd GPDs parameterized via linear relations to chiral even GPDs under parity and charge conjugation symmetries in Reggied diquark model

Pseudoscalar meson electroproduction with CLAS12

From GPDs to Transition Distribution Amplitudes (TDAs)

window to the 3D nucleon structure!

Exclusive ρ/ω production with CLAS12, ep-> ep (ρ/ω)

N. Trotta et al (UCONN)

From the ground state nucleon to resonances

How does the exitation affect the 3D structure of the Nucleon?

 \rightarrow Pressure distributions, tensor charge, ... of resonances?

Traditional way: Study of transition form factors (2D picture of transv. position)

3D picture of the exitation process: Encoded in transition GPDs

Simplest case: $N \rightarrow \Delta$ transition $\rightarrow 1$

P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023).K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023).

➔ 16 transition GPDs

- 8 helicity non-flip transition GPDs (twist 2)
 - Related to the Jones-Scardon and Adler EM FF for the N $\rightarrow \Delta$ transition
- 8 helicity flip transition GPDs (transversity)

Non-diagonal DVCS / DVMP

factorization expected for: $-t/Q^2$ small, $Q^2 > M^2_{N^*}$ x_B fixed

N-> Δ (1232) transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Factorization expected for: -t / Q² << 1, x_B fixed, and Q² > M_{Δ}²

□ Provides access to p-∆ transition GPDs $ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$ $I_z = +3/2$

The pπ⁺ final state can only be populated by
 Δ-resonances -> Large gap between Δ(1232) and higher resonances

Event Selection and Kinematic Cuts

Signal and Background Separation

Resulting Beam Spin Asymmetries (Q²-x_B integrated)

Results

Non-diagonal DVCS / DVMP

factorization expected for: $-t/Q^2$ small, $Q^2 > M^2_{N^*}$ x_B fixed

N-> Δ (1232) transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

$e \; p \rightarrow e` \; \Delta^{\!\!\!+} \; \gamma \rightarrow e` \; n \; \pi^{\!\!\!+} \; \gamma$

ep->en π^+

VS.

ep->e $\gamma n\pi^+$

$N \rightarrow \Lambda, \Sigma, \Sigma^*$ GPDs in K production with CLAS12

Production mechanism

Same twist-3 mechanism with chiral-odd structures as π , η production

Symmetry relations for strange chiral-odd GPDs

 $N \to \Lambda, \Sigma$ related to $N \to N$ by conventional SU(3) flavor symmetry

 $N \rightarrow \Sigma^*$ related to $N \rightarrow N, \Lambda, \Sigma$ by SU(6) spin-flavor symmetry in large- N_c limit

U. Shrestha (UConn)

Electron Scattering Binning Scheme

	Resonance Region	DIS Region
Inclusive Scattering	Q², W	Q², x _B
Exclusive Process (γ , π , ρ , ϕ ,) Q ² , W, cosθ*, φ	Q², x _B , -t, φ
Off-diagonal DVCS or DVMF	$\mathbf{Q}^2, \mathbf{x}_{B}, -t, \mathbf{\phi}, \mathbf{M}_{\pi I}$	_N , cos θ^* , ϕ^*

Summary

- GPDs provide a unifying framework to study the 3-D quark and gluon structure of the nucleon
- 3-D imaging of nucleons uncovers the rich dynamics of QCD.
- CLAS12 allows high precision measurements of Exclusive channels to study ground nucleon GPDs and transition GPDs with large kinematic coverages in the valence quark regime!
- The nucleon-to-resonance (N->N*) transition GPDs may provide a unique tool for exploring the 3D structure of baryon resonances.

