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GPD definition

@ Generalised parton distributions (GPDs) are a “byproduct” of factorisation of
amplitudes tor exclusive processes such as deeply-virtual Compton scattering.
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@ An operator definition of the GPDs in the light-cone gauge (n - A = 0) reads:

k] dy —ix(n-P — (YN ' yn AT
: a AY _irvin. yn yn
fomy A2) — Nalp I —ix(n-P)y <P _ A | fre (_) FVB (__) | P A>
Q/H(x’g’ ) z(n - P) o a 2/ ¢ 2 i
yr yn yn yn
2 2 e 2
ﬁq/H(xafaAz) — Fg/H(ZE,f,Az) —

P+ A P—A P+ A P—-A



| GPD definition

@ GPD correlators are obtained by projection:
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@ Projectors are parameterised 1n terms of a basis of four four-vectors:

@ n and 7 parameterise the longitudinal directions,
@ R and L parameterise the transverse directions,
@ all scalar products are zero except: (nn) = — (RL) = 1.

@ A typical realisation in Sudakov decomposition is:
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@ 'The relevant twist-2 projectors are:
L'y € {1, 175,i0% " 75}
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GPD definition

@ GPD correlators are typically parameterised in terms of eight independent
GPDs for quarks (i = g) and as many for gluons (i = g):

@ labelingl' , € {U,L,T}.
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@ All GPDs with the same polarisation label evolve 1n the same way.
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GPD evolution

Using dimensional regularisation in 4 — 2¢ dimensions, the UV renormalisation
of GPDs can be implemented 1n a multiplicative fashion:
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In the MS scheme, renormalisation constants have the following structure:

Zz[gr] (Zvliaa& )_5235 ]-_Z _I_Z( ) Z[F][ ](Zal{)
p—l
Exploiting the independence of the bare GPDs on i (for € — 0), one can derive
a RGE governing the evolution of renormalised GPDs w.r.t. p:
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The evolution kernels & are related to the normalisation constants Z:
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Parton-in-parton GPDs

@ The ren. constants Z can be extracted by means of parton-in-parton GPDs, .c.
GPDs where the fadronic states are replaced by partonic states.

yn yn yn yn

1+ 6 (1=
@ Dependence on A% can be neglected at twist-2.
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Parton-in-parton GPDs

@ In light-cone gauge:
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@ 'The projectors A, are introduced for convenience to project out the physical
partonic spin/helicity states that contribute to the amplitude:
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Evolution kernels at one loop

-

@ lhe general structure 1s for all channels:
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@ In we have computed the full set of pi%:
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Evolution kernels at one loop

@ We have computed these functions also 1n the longitudinally polarised case:
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@ and 1in the transversely polarised case:
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- Evolution equations

@ Defining the anti-quark distributions as:

U, U,
Fq[/HT](:v,f,AQ;u) —F[/HT( x, &, A% )

Fl (@, & A% ) = +F 7 (—2, €, A% p)

r—

@ one can construct non-singlet and singlet combinations:
nf
/ [Tl r] \

g/

g

@ lhe evolution equations decouple and can be written in a DGLAP-like fashion:
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3 @[lrz]i’[o] are appropriate combinations of the functions plgj presented above. 10



Numerical setup

g

@ ''he one-loop evolution kernels for all polarisations are now implemented 1n
APFEL++ and are available through PARTONS allowing for LO GPD

evolution 1n momentum space.

-

@ We achieved a stable numerical implementation over the full range 0 £ < 1:

@ numerical checks that both the DGLAP and ERBL limits are recovered,

-

@ numerical check of polynoemiality conservation.

-

@ Numerical tests use the realistic Goloskokov-Kroll (GK) model for proton GPDs
as implemented in PARTONS as an initial-scale set of
distributions:

@ we consistently used H,, for unpolarised, H , for longitudinally polarised, and H;,, for
transversely polarised evolution.

&

GPDs are evolved from 2 to 10 GeV 1n the variable-flavour-number scheme, u.c.

accounting for heavy-quark-threshold crossing, at A> = — 0.1 Ge V2.
¥



Evolution and DGLAP 1_1m1_t L J

I— £=0
0.8 ——— ¢=0.05 .
£=0.5
06— §=1 _
o I i
éo
| 3 -4:_ ||
T 1
8
0.2 F §‘
91.0 1 I 1 IIIIII 1 1 1 L1 1 11
j ! | ! L | ! ! ’ ""'_
(52_ _
a
8 __,A‘ i
2
g %—ﬁ-lllll 1 1 1 IIIIII
e 0 S
103 102 1071 109

&

@

@

LO evolutlon from p,o = 2 GeV to p = 10 GeV GK model

DGLAP limit reproduced within

107 relative accuracy.

GPD evolution may significantly
deviate from DGLAP evolution.

T'he evolution generates a cusp at
x = & but the distribution remains

continuous at this point.
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Evolution and DGLAP limit I;Ll

LO evolutlon from [.L() = 2 GeV to p = 10 G

LO evolutlon from uo = 2 GeV to p = 10 GeV GK model
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DGLAP limit reproduced within

107 relative accuracy.
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@ GPD evolution may significantly
deviate from DGLAP evolution.

T'he evolution generates a cusp at
x = & but the distribution remains
continuous at this point.
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Evolution and DGLAP limait

LO evolutlon from Mo = 2 GeV to p = 10 GeV GK model
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Polynomiality

@ GPD evolution should preserve polynomiality.

@ The following relations for Mellin moments of GPDs must hold at all scales:

n

1
[ dea® B (o) = Y AP (e
0

k=0

n(+1)

1
/ dx$2"’+1F[ (,&, 1) Z B
0

Polynomiality predicts that the first moment (n = 0) of the non-singlet distribution
1S constant 1n .

The coefficient of the £2"*2 term of the singlet (D-term), only present in the
unpolarised case, 1s absent in the GK model and 1s not generated by evolution:

(g

@ hence also the first moment of the singlet is expected to be constant in ¢.

For larger values of n, one can just check that the behaviour in ¢ follows the
expected power law in £. 15



LO evolution from py = 2 GeV to p = 10 GeV
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LO evolution from py = 2 GeV to p = 10 GeV
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@ First moment for both singlet and non-singlet is indeed constant in ¢:

-

@ this was expected and the expectation 1s very nicely fulfilled.

Second and third moments follow the expected law:

s

@ B, ., 1n the singlet is consistently found to be compatible with zero (no D-term).

n

@ 1ncluding odd-power terms in the fit gives coethicients very close to zero.
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LO evolution from py = 2 GeV to p = 10 GeV
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LO evolution from py = 2 GeV to p = 10 GeV
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@ First moment for both singlet and non-singlet is indeed constant in ¢:

@ this was expected and the expectation 1s very nicely fulfilled.

-
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B, | 1n the singlet 1s consistently found to be compatible with zero (no D-term).

Second and third moments follow the expected law:

including odd-power terms 1n the fit gives coethicients very close to zero.
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Polynomiality [T]

LO evolution from py = 2 GeV to p = 10 GeV
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@ First moment for both singlet and non-singlet is indeed constant in ¢:

@ this was expected and the expectation 1s very nicely fulfilled.

-

@ Second and third moments follow the expected law:

s

@ 1ncluding odd-power terms in the fit gives coethicients very close to zero.

@ B, ., 1n the singlet is consistently found to be compatible with zero (no D-term).

n
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APFEL++ VS. Vlnnlkov
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APFEL++ vs. Vinnikov [L]
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Conclusions and outlook

@ We have revisited LO GPD evolution in momentum space:

@ Ab-wuto calculation of the LO unpolarised splitting kernels based on Feynman diagrams
in light-cone gauge for all twist-2 operators.

@ GPD evolution equations recasted in a DGLAP-like form convenient for implementation.
@ Various analytical properties of the kernels highlighted and numerically checked.

@ DGLAP (and ERBL) limits correctly recovered within excellent accuracy.

@ LEvolution conserves polynomiality (and agrees with conformal-space evolution).

?

the code ( APFEL‘++) is public and available within PARTONS
https://github.com/vbertone/apfelxx ’ E H ’

http://partons.cea.fr/partons/doc/html/index.html

@ Next steps:

-

@ middle term: benchmark of public evolution codes (discussion already started),

@ longer term: (re)calculation and implementation of NLO corrections (already on the
way).
21
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GPD definition

@ 'T'he use of light-cone gauge implies:

i

6

6

@

¢

the absence of the Wilson line,

a simpler gluon GPD written in terms of the gluon field and not the field strength,

the absence of ghosts in perturbative calculations,

more complicated gluon propagator:

[, @ v, b
OO0 50000000
2
i0apd™ (k)
APV (k [18%
k2 + 40 (k) = =9
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GPD definition

idH (k) () = — g | kFnY + EYnH
(”k)Reg.

DPR) =770

@ The linear (eikonal) propagator (nk)~! needs to be regularised:

@ 1t separately gives rise to non-integrable end-point singularities in real-emission graphs
and to plain divergences in virtual graphs,

@ the two cancel giving an integrable result.

k= (1—2)p
k=((1—2x)p
P, @gmxp + P (GGS;DD\ p
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GPD evolution

@ Using dimensional regularisation in 4 — 2¢ dimensions, the UV renormalisation
of GPDs can be implemented 1n a multiplicative fashion:

. dy f ” —€
Fi[;]]q(x,f,AQ;u) — ;m%) S‘ / ]y!Z[ | (; E,@s(,u)wf) F}?LI(%&A%&M )
J=4,9

g

@ In the MS scheme, renormalisation constants have the following structure:

ZZ.[;] (2, R, a5,6) = 00 (1 — 2) +Z( ) (2, K)

¢
=1
ﬁ
-

E E E

@ LExploiting the independence of the bare GPDs on i (for € — 0), one can derive
a RGE governing the evolution of renormalised GPDs w.r.t. p:

dF} ) (2, €, A% ) L d
i — Z/ o z’k ($ ; o ('u)> F’LBH( &A% )

dl
H Iu k=q,g 75




GPD evolution

-

@ where the inverse of the renormalisation constant Z~!

U 4

@ consider the factorisation of a Compton form factor: F(Q)

]k

@ The evolution kernels & are related to the normalisation constants Z as follows:

1 dZ-[r] (x £ o 6)
as | =1 S Z
P (Z o ) =0 / Y| d1n p?

, Qg €
z'y

1s defined as:

1
d _
Z/ _wZ’L[F] (Evévags?g) Z[i] : (ivgachag) :5zk5 (1_5)
L lw] Y e w J w2 T
@ If factorisation holds, the evolution kernels & must be finite:

= C(p/Q, as(p) ® F(p)

@ Being & a physical observable, it has to be independent of u order by order 1n o

dF

~1

:O:
¢e dIn p?

@ Since the coetficient function C 1s finite, so must be £.

dIn C(p, as(p)) |

dIn p?

Plas())

Q F(p)
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GPD evolution

The finiteness of the evolution kernels & has important consequences on the
structure of the renormalisation constants Z:

dlnZ — Oln 7
7)_ 5(&87 )
dIn p? Oarg
but:

_ n = 7ln,p] _ il n rzln,p] __ = r7lp]
Z=1+) o 7 _1+Z€pz%z _1+Zgz (cs)
n=1 p=1 p=1 n=p p=1

so that:

OlnZ 0z 19z 1
Z~ 1 = — |
aOéS 8053 3 8048 © ( )
Since B(ay,€) = —ca, + B(ay), it follows that:
[1]
P =—a, 02 + O (1)
Oaug £

The evolution kernels are extracted from the single pole of the renormalisation
constants to all orders in a,.

The finiteness of & implies that the residual O(1/¢) has to be identically zero:

=3

@ higher-order-pole coefficients Z", n > 1, are related to ZH and . 27
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GPD evolution

The kernels & admit the perturbative expansion:

Plas) = as Z o Pl
n=0

At one loop, e the leading order, one simply finds:

plo] — _ 7[L1]

At two loops:
Pl _ _gzl21]
But with the additional constraints that:

722 _ g g Lona g o
> )

An explicit two-loop calculation must tulfil this identity, thus providing a strong
check of the calculation itself. ’8



Parton-in-parton GPDs at LO
@ At O(1): | |
Vo) =00 (@) Al(w) = AL (@)

@ One immediately finds that the only non-zero GPDs are g/g and ¢/gq:

_m m _m m
2 2 2 2
(1+&)p (1= &)p (14 (1=op

Forg 0 (2:8) = Fyy 0 (0, ) = Fy) 0w, €) = (1 - €)5(1 - )

F o0 @ o) = F 0 @, 6) = TN @, 6) = V1 62601 — )

@ No divergences at this order and thus no need for renormalisation.

@ This calculation sets the normalisation of GPDs.

29



Parton-in-parton GPDs at NLO

[ _J

@ At O(a,) tfor the g/g channel one has to compute one single “real” diagram:

Y Y
0, —=,0 0,2, 0

(14+&)p—Fk (1=&p—Fk
a, fi B,v
k
(1+&p (1=8p
@ 'This produces:
Qs ~1T7,[1],real > dy— i(l—o B
EFQ[/EJ > ($,§,5) — \/1 - 52 -/_OO ?6 (1=2)p+y 1r {R([;Ic;] (y_,f,g)./\([;]}

@ with:

iy T A2k iy A+ OP— ML [(1 = Op — Ky duw (k)
o (0=2%) = CF/ (2m)2~% (14 &)p — k)2 +40][((1 — &)p — k)2 + i0]
30




Parton-in-parton GPDs at NLO

@ After the trivial integration over k™ and the evaluation of contractions
and traces, one finds:

AT, [1],real d2_2€kT 2 e — A($,§)+B($,€)p+k‘_/k%
R o) = [ G [ av

i/ (2m)2 =2 "=k (kT =y ) (k™ — k)
- _ - S - S
kl — 2(1 _Tx)p_|_ _7’(1_33)77 k2 — _2($ n f)p+ +Z(f’7+f)77 k3 — _2($ - £)p+ —1—2(33 - 5)77

@ Assuming x, ¢ > 0, the pole structure depends on the sign of x — ¢&:

AIm (k™) A Im(k7)
r < &
- >
X X Re(k™)
ks ki
31




Parton-in-parton GPDs at NLO

@ T'he final result looks like this:

~ , ,real 5 5 e > de
Fq[z . = 1-80(1-x [ ‘|‘§)pq/q (x ) + 0(x — §)pq/q (:{; _E>] NQ 55/0 k%+T2€

X

@ Strictly speaking:

*dki o (1 1 T)[A],[1] real B
/O W:MO <5U—v—£>=0 = Fq/q (z,8,€) =0

G

@ We are only concerned with the UV part: the IR one has to cancel against
the partonic cross section when computing a physical observable (IR safety).

2/,,2\¢
Fq[%[l] real = /1—£20(1—x [ x—l—f)pq/q <:U i) +9(x—§)pq/q <g; _E;)] (ke /gﬂo) L IR
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Evolution kernels at one loop

-

S (1+&p ( ?j) \ / %\1 E)p
(1+&)p (1+&p

@ The final result 1s:
g (@.66) = V1= 52{9(1 — ) [9(33 +E)Pg/q (w g) +0(x — &)py (:I; _gﬂ

1 2¢
)2/ dz]}“_JrIR
0o 1—=2 €
@ lhe resulting evolution kernel 1s:

Phd Oy, k) = 00— y) (00 + ©)pl, (4, 5) + 01 = R)PL;, (v, —5))

2
&
T2

+ 0(1—2)Cp B ln(

3 L dz —

@ |lhe virtual Contribution (Common to all polarisations) is computed as:

33
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&

¢

&

@ All other combinations give zero.

Parton-in-parton GPDs

The partonic fields that appear in the operator definition of the GPD
correlators are interacting fields.

Interacting fields reduce to free fields after an arbitrary number of rea/ and
virtual emissions:

Yo — s 4ﬁ£;«<,<§i; T B0

0
---fﬁm@gow“&)

Additional radiation gives rise to perturbative corrections and the need
for renormalisation.

Free partonic fields eventually annihilate the appropriate partonic states:
0 — ik
0 (@), 5)g = €7 * g o (k) [0)

0 ik-x
D) |k, 8)g = e Fv, 4 (k)|0)

A ()[R, s)g = e~ R el (k)|0)
34



Parton-in-parton GPDs
@ In light-cone gauge:

SN C(nep)(@*—=E&) [dy _inm.
Fgggﬁz (,8) = 2(N2 — 1)z /%6 ( p)y<(1—§)p,

2 (%) Lot (< 5) |1+ Op.s) A,

9,9

Gy (B i (25) 1+ o, 5) Avs

2 2 9,9,9,9",q’

A 1 d :
Fypaga @8 = 55 | gre 0P (1=,

/ /
a/9,9:4,9',q ON. | 27

g

@ 'The projectors A, are introduced for convenience to project out the physical
partonic spin/helicity states that contribute to the amplitude:

Agrstig s (1 — &)p)ug,s((1+&)p =V 1-&2 {Zﬁ lﬁ’y ZUW/PI/Y ! c (UL T}
Ase (1= E)p)er((1+ E)p) = A*;” — {—gl¥, il ~RVRY — L'L")

[~

@ |hese quark-in-quark combinations:

NS, + : : : :
Fq/q (Fq/q C]/C]’) - (FQ/ﬁ — Q/G’)

~NS,V ~NS,— - -
Fq/q _Fq/q +nf(FC]/CI/ _FQ/G’)

NS, -
Fope=F 0" +np(Fyg + Fyg)

@ are particularly convenient when implementing the evolution. 35



Properties of the kernels

dF[F],:I: z, £, o, > dq X
( f /L) _ (,LL) / _yP[F]:I:,[O] (y, §) F[F]’:l: (5,5,,&

dIn p? 4
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Properties of the kernels

@ In the limit kx — 0 the DGLAP splitting functions are recovered:

i P (3, ) = 6(1 - y) P00y

x—0

-

@ In the limit k —» 1/x the ERBL non-singlet kernel in the unpolarised case 1s recovered:

1 2t — 1 1 t—1 1 t 1
[U]—,[0] _ ¢ —0(t —
2u—1p (2u—1’2t—1) CFIH(U )< U +u—t) ( u)<1—u+u—t)]+

1

with [f(t. ], = f(t.u) = S(u—1) | du’ f(t.u)
We have also derived singlet and no(r)l-singlet ERBL kernels for the other polarisations.

@ Continuity of GPDs at the crossover point x = £ (k = 1) guaranteed:

: [T] =, [0] _ao T'+,[0
,i};l—>m1 P (y, k) = finite 732[ Sl ](y, k) x (1 — K) )



Properties of the kernels

Valence sum rule (polynomiality of the first moment of the unpolarised non-singlet):

?

) ; U], [0] § § =) (2§ LY | _
/ “(x, &, A% pu) =FF(AY) = / [ ( yz>—|—y772 (y’z)]_
=

As consequence of the Ji’s sum rule one also finds:
1
/ dr x {F[U (z,&, A% 1) +F[ (x, f,AQ,,u)} = constant in £ and p
0

@ thatleads to:

1 B _
w0 (. § U]+,[0] § £ [ (2§ 1 w)+,0] (2§ 1 _
/0 Az _Pl’qq ( Yz )HDl (Z y2> 2 (PQ‘” <yz 7200 y'z))] =0
! i 1 2z 1\\]
g | plul+lol (& o (, £, & +o (26 1 w00 (28 1\
/0 ~ & _Pl,qg 2 Yz +P1,gg 9 Yz y2 PZ ,qg Y ’ +P2,gg Y ’ _

=

@ These identities were analytically verified in
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Properties of the kernels

The é-independence of the 1st moment of longitudinally polarised GPDs implies:

1
/ dz [Pf ;;;r’[o]
0

( £
Z?
Yz

)

_|__

§
Y

PL7+7[0]

2,13

(

: >] = constant in &

This 1s true and we also find that the g/g and and ¢/g channels are 1dentically zero, z.e. the
1s scale independent:

first moment of FL-+
q/H

@ physical observable connected with the anti-symmetric part of the EM'T.

The é-independence of the 2nd moment of longitudinally polarised GPDs implies:
)] = constant in &

1
/ dz z [Pf’_’[o] (
0

Zy T
yz

§

)

2
+ >
y2

7)2117_7[0]

(

z& 1
y 'z

Similar arguments apply to transversely pol. GPDs and lead to the verified constraints:

1
/ dz [P;‘F’_’[O](
0
L i}
/dzz
0 i
" i}
/dzz
0 i

T,4,(0
Pl,qq 0] (z,

T,4,(0
Pl’gg[ ] (z,

§

gy —
yz

)

§

Yyz

_I__

)

§
Y

52
T
52
y2

7);7_7[0] (

=
Y

T,+,0
pTe{0 (

1
'z

z& 1
y 'z

)

)] = constant in &

= constant in &

= constant in & 39



The ERBL limit

@ The limit ¢ — 1 (x — 1/x) we should reproduce the ERBL equation.

@ Iti1s well known that in this limit Gegenbauer polynomials decouple
upon L.O evolution, such that:

Fon(w, o) = (1= 2)Cy/ " (2) = Fan(w,p) = exp | -

M _
[ dingias(| Fauo o

Ko

@ where the kernels Vz[g] can be read off, for example, from
or

@ We have compared this expectation with the numerical results for GPD
evolution by setting k = 1/x and using a Gegenbauer polynomial as an

initial-scale GPD.
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The ERBL limit

LO ERBL evolution from pug =1 GeV

1.0

___________
___________
———
_______

|
e
-

Ratio to analytic
ol ol
(- (-
(- e

10—2 10! 100
T
ERBL limit reproduced within less than 107 relative accuracy,

Same accuracy for higher-degree Gegenbauer polynomials.
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Conformal-space evolution

@ In order to check that LO GPD evolution (¢ # 0) in conformal space 1s
diagonal 1n a realistic case, we have considered the RDDA:

Hy(w.6,10) = [ d5dad (2~ 6~ €a) a(8)m(5,)

. Q2
with: ; .
3D 172 3 3((1—1[8])7 —a”)

r) = —= 1l —x (D, ) = —

We have evolved the 4th moment: 05 prrrrrorrr e e e ot /.jjlvG.V -
1 0.4 — _____________________________ —— n=2GeV :

Cr (&) =¢' / dx C; (g) Hy@&w) e o Gev
—1 /5_: ) :F \\\\—\ p = 100 GeV E

4

C

from py = 1 GeV using the (analytic)
conformal-space evolution and the _
(numerical) momentum-space £1.05 |
evolution. :

we found excellent agreement.



