Gunar Schnell STRONG-2:20

Transversity 2024 Trieste, 3-7 June 2024

Di-hadron fragmentation in reduced dimensionality

7th international workshop on transverse phenomena in hard processes

hadron pol

*) TMD ... transverse-momentum dependent

relevant for unpolarized final state

hadron pol

gunar.schnell @ desy.de

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

hadron pol

*) TMD ... transverse-momentum dependent

polarizing FF

gunar.schnell @ desy.de

*) TMD ... transverse-momentum dependent

transversity FF

FF ... fragmentation function

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

- instead of looking at final-state hadron polarization:
 - use angular distribution of two hadrons to tag guark polarisation
 - dihadron fragmentation a la Collins, Heppelmann & Ladinsky [Nucl. Phys. B 420 (1994) 565]; Boer, Jacobs & Radici [Phys. Rev. D 67 (2003) 094003]

hadron-pair production

instead of looking at final-state hadron polarization:

- use angular distribution of two hadrons to tag guark polarisation
- dihadron fragmentation a la Collins, Heppelmann & Ladinsky [Nucl. Phys. B 420 (1994) 565]; Boer, Jacobs & Radici [Phys. Rev. D 67 (2003) 094003]

dihadron FFs: alternative path to extract (even collinear!) transversity

exploit orientation of hadron's relative momentum, correlate with target polarization gunar.schnell @ desy.de

hadron-pair production

complication: semi-inclusive DIS cross section with transverse-target polarization now differential in 9(!) variables (even more for back-to-back hadron pairs in e^+e^- annihilation)

first step: consider only collinear case -> 7 variables

$$\frac{\mathrm{d}^{7}\sigma_{UT}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\phi_{S}\,\mathrm{d}\phi_{R\perp}\,\mathrm{d}\cos\theta\,\mathrm{d}M_{\pi\pi}} = -|S_{T}|\sum_{q}\frac{\alpha^{2}e_{q}^{2}}{2\pi sxy^{2}}(1-y)\frac{1}{2}\sqrt{1-4\frac{M_{\pi}^{2}}{M_{\pi\pi}^{2}}}\sin(\phi_{R\perp}+\phi_{S})\sin\theta\,\,h_{1}^{q}(x)H_{1,q}^{\triangleleft}(z,M_{\pi\pi},M_{\pi\pi})$$

hadron-pair production

 $D_{1,q}(z, M_{\pi\pi}, \cos\theta) \simeq D_{1,q}(z, M_{\pi\pi}) + D_{1,q}^{sp}(z, M_{\pi\pi}) \cos\theta + D_{1,q}^{pp}(z, M_{\pi\pi}) \frac{1}{4} (3\cos^2\theta - 1)$

Legendre expansion in $\cos \theta$:

 $D_{1,q}(z, M_{\pi\pi}, \cos\theta) \simeq D_{1,q}(z, M_{\pi\pi}) + D_{1,q}^{sp}(z, M_{\pi\pi})$

 $H_{1,q}^{\triangleleft}(z, M_{\pi\pi}, \cos\theta) \simeq H_{1,q}^{\triangleleft, sp}(z, M_{\pi\pi}) + H_{1,q}^{\triangleleft, pp}(z, M_{\pi\pi}) \cos\theta$

gunar.schnell @ desy.de

$$\pi^{+}\pi^{-} \operatorname{CM} \qquad P_{\pi^{+}}$$
frame
$$\begin{array}{c} & & & \\ &$$

$$M_{\pi\pi})\cos\theta + D_{1,q}^{pp}(z, M_{\pi\pi})\frac{1}{4}(3\cos^2\theta - 1)$$

$$-y)\frac{1}{2}\sqrt{1-4\frac{M_{\pi}^{2}}{M_{\pi\pi}^{2}}}\sin(\phi_{R\perp}+\phi_{S})\sin\theta \ h_{1}^{q}(x)H_{1,q}^{\triangleleft}(z,M_{\pi\pi},$$

Legendre expansion in $\cos \theta$:

 $D_{1,q}(z, M_{\pi\pi}, \cos\theta) \simeq D_{1,q}(z, M_{\pi\pi}) + D_{1,q}^{sp}(z, M_{\pi\pi}) \cos\theta + D_{1,q}^{pp}(z, M_{\pi\pi}) \frac{1}{4} (3\cos^2\theta - 1)$

 $H_{1,q}^{\triangleleft}(z, M_{\pi\pi}, \cos\theta) \simeq H_{1,q}^{\triangleleft, sp}(z, M_{\pi\pi}) + H_{1,q}^{\triangleleft, pp}(z, M_{\pi\pi}) \cos\theta$

next step: integration over $\cos \theta \rightarrow 6$ remaining variables and less FFs to worry about

gunar.schnell @ desy.de

$$\pi^{+}\pi^{-} CM$$
frame
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$-y)\frac{1}{2}\sqrt{1-4\frac{M_{\pi}^{2}}{M_{\pi\pi}^{2}}}\sin(\phi_{R\perp}+\phi_{S})\sin\theta \ h_{1}^{q}(x)H_{1,q}^{\triangleleft}(z,M_{\pi\pi},$$

Legendre expansion in $\cos \theta$:

 $D_{1,q}(z, M_{\pi\pi}, \cos\theta) \simeq D_{1,q}(z, M_{\pi\pi}) + D_{1,q}^{sp}(z, M_{\pi\pi})$

 ρ : integration over cos $\theta \rightarrow 6$ remaining variables and less FFs to worry about

simple case study: ete- annihilation

basic assumptions:

- for simplicity: dihadron pair with equal-mass hadrons, e.g., pions
- e+e- annihilation, thus energy fraction z translates directly to energy/momentum of particles/system as primary energy is "fixed" (-> simplifies Lorentz boost)
- without loss of generality, focus on B factory and use primary quark energy $E_0 = 5.79 \text{GeV}$
- minimum energy of each pion in lab frame: 0.1 E₀ (i.e., z_{min} = 0.1)

arrive at condition on θ , e.g., polar angle of pions in center-of-mass frame:

$$\cos\theta \le \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_\pi^2)]}} E_0 M$$

as both pions have to fulfil the constraint on the minimum energy:

$$\cos(\pi - \theta) = -\cos(\theta) = -\cos(\theta)$$

thus:

application of Lorentz boost

can easily apply Lorentz boost using the invariant mass of the dihadron M and its energy zE_0 to

$s\theta \leq \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_\pi^2)]}}E_0M$ $|\cos \theta| \le \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_{\pi}^2)]}} E_0 M$

arrive at condition on θ , e.g., polar angle of pions in center-of-mass frame:

$$\cos\theta \le \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_\pi^2)]}} E_0 M$$

- as both pions have to fulfil the constraint on the minimum energy:
 - thus:
- translates to a symmetric range around $\pi/2$ less energy in the lab frame ... and maybe too little)

gunar.schnell @ desy.de

application of Lorentz boost

can easily apply Lorentz boost using the invariant mass of the dihadron M and its energy zE0 to

$\cos(\pi - \theta) = -\cos\theta \le \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_{-}^2)]}} E_0 M$ $|\cos \theta| \le \frac{z - 2z_{\min}}{\sqrt{[(zE_0)^2 - M^2)(M^2 - 4m_-^2)]}} E_0 M$

(can be easily understood because at $\pi/2$ the pions will have both the same energy in the lab and easily pass the z_{min} requirement, while in the case of one pion going backward in the CMS, that pion will have

(again without loss of generality) let's assume M=0.5 GeV :

all theta below curve (and symmetrically above its mirror curve relative to dashed line at $\pi/2$) are excluded

clearly limited, especially at low z

impact of z_{min}=0.1 on accepted polar range

partial-wave expansion of dihadron FF

- partial-wave expansion worked out in Phys. Rev. D67 (2003) 094002
- for the particular case here, use Phys. Rev. D74 (2006) 114007, in particular Eq. (12) [and later on Figure 5]:

- it is the first contribution ($D_{1,00}$) that is used in "collinear extraction" of transversity
 - it is also the only one surviving the integration over θ
- $D_{1,ol}$ contribution vanishes upon integration over θ as long as the theta range is symmetric around $\pi/2$ [as it is the case here]
- the $D_{1,\parallel}$ term, however, will in general contribute in case of only partial integration over θ the question is how much?

gunar.schnell @ desy.de

 $D_1^q(z, \cos\theta, M_h^2) \approx D_{1,oo}^q(z, M_h^2) + D_{1,ol}^q(z, M_h^2) \cos\theta$ $+ D_{1II}^{q}(z, M_{h}^{2}) \frac{1}{4} (3\cos^{2}\theta - 1),$ (12)

$D_{1,\parallel}$ contribution to dihadron fragmentation

- $D_{1,\parallel}$ is unknown and can't be calculated using first principles
- it can not be extracted from cross sections integrated over θ
- upon (partial) integration there is no way to disentangle the two contributions
- in PRD74 (2006) 114007, a model for dihadron fragmentation was tuned to PYTHIA and used to estimate the various partial-wave contributions
- its Figure 5 gives an indication about the relative size of $D_{1,\parallel}$ vs. $D_{1,00}$:

• as both contributions — $D_{1,\parallel}$ and $D_{1,00}$ — will be affected by the partial integration, look at relative size of the $D_{1,\parallel}$ to $D_{1,00}$ modulations when subjected to integration:

$$\frac{\mathsf{D}_{1,\text{II}}}{\mathsf{D}_{1,\text{oo}}} \frac{\int_{\cos(\pi-\theta_0)}^{\cos\theta_0} \mathrm{d}\cos\theta \,\frac{1}{4} (3\cos^2\theta - 1)}{\int_{\cos(\pi-\theta_0)}^{\cos\theta_0} \mathrm{d}\cos\theta} = -\frac{1}{4} (1 - \cos^2\theta_0) \,\frac{\mathsf{D}_{1,\text{II}}}{\mathsf{D}_{1,\text{oo}}}$$

- the relative size of the partial integrals reaches a maximum of 25% for z=0.2 [i.e., pions at 90 degrees in center-of-mass system]

effect of partial integration

without limit in the polar-angular range ($\theta_0 = 0$) -> no contribution from $D_{1,\parallel}$ [sanity check]

as both contributions — $D_{1,\parallel}$ and $D_{1,00}$ — will be affected by the partial integration, look at relative size of the $D_{1,\parallel}$ to $D_{1,00}$ modulations when subjected to integration:

$$\frac{\mathsf{D}_{1,\text{II}}}{\mathsf{D}_{1,\text{oo}}} \frac{\int_{\cos(\pi-\theta_0)}^{\cos\theta_0} \mathrm{d}\cos\theta \,\frac{1}{4} (3\cos^2\theta - 1)}{\int_{\cos(\pi-\theta_0)}^{\cos\theta_0} \mathrm{d}\cos\theta} = -\frac{1}{4} (1 - \cos^2\theta_0) \,\frac{\mathsf{D}_{1,\text{II}}}{\mathsf{D}_{1,\text{oo}}}$$

- without limit in the polar-angular range ($\theta_0 = 0$) -> no contribution from D_{1,II}
- the relative size of the partial integrals reaches a maximum of 25% for z=0.2 [i.e., pions at 90 degrees in center-of-mass system]
- in order to estimate the $D_{1,\parallel}$ contribution, one "just" needs the relative size of $D_{1,\parallel}$ vs. $D_{1,00}$, e.g., Figure 5 of PRD74 (2006) 114007
 - Iet's take for that size 0.5 (rough value for M=0.5 GeV)

effect of partial integration

[sanity check!]

• ... $D_{1,\parallel} / D_{1,00} \sim 0.5$ results in an up to O(10%) effect on the measured cross section:

depending on the sign of $D_{1,II}$, the partial integration thus leads to a systematic underestimation (positive $D_{1,\parallel}$) or overestimation (negative $D_{1,\parallel}$) of the "integrated" dihadron cross section

leads to overestimate/underestimate of extracted transversity

gunar.schnell @ desy.de

effect of partial integration

switching gears: hyperon polarisation in DIS

switching gears: hyperon polarisation in DIS

hermes is still alive

• polarization can be extracted just by measuring angular distribution of decay protons

in praxis distorted by instrumental effects (cf. first part of talk)

gunar.schnell @ desy.de

$$P_X^{\Lambda} = -P_B D_X(y) \left\{ \frac{M}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) H_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(x_B)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_1$$

$$P_Y^{\Lambda} = D_Y(y) \frac{M}{Q} \frac{\sum_q e_q^2 x_B f_1^q(x_B) D_{1T}^{\perp(1)q}(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}$$

$$P_Z^{\Lambda} = P_B D_Z(y) \frac{\sum_q e_q^2 x_B f_1^q(x_B) G_1^q(z)}{\sum_q e_q^2 x_B f_1^q(x_B) D_1^q(z)}$$

access to several novel spin-dependent FFs

- Y-component of polarization ("self-polarization") not correlated with beam polarization drops out in beam-spin asymmetries
 - concentrate on longitudinal and transverse spin transfer

Lambda production in DIS

unpolarised (uniform)

acceptance distorts distribution

heavy use of Monte Carlo to correct for acceptance

major source of systematic uncertainty

gunar.schnell @ desy.de

- NOMAD: basically 4π acceptance
- HERMES: cancel acceptance effect using two beam helicity states

(anti-)Lambda yields at HERMES

- HERA-I data of 1999-2000
- HERA-II data of 2003-2007
- DIS cuts
 - $W^2 > 10 \text{ GeV}^2$
 - 0.2 < *y* < 0.85
 - Q2 > 0.8 GeV²

• total number of (anti) Λ is about 50k (6k)

gunar.schnell @ desy.de

[one data-taking period]

Projected precision

PHYSICAL REVIEW D 74, 072004 (2006)

- PDG updated values of asymmetry parameter 0
- rescaled older results that used previous ±0.642

Projected precision

- PDG updated values of asymmetry parameter
- rescaled older results that used previous ±0.642

results foreseen to be released for upcoming STRONG-2020 workshop "Present and future perspectives in Hadron Physics" -> to be presented by D. Veretennikov

Projected precision

access spin-dependent distributions

conclusions

• two-hadron final states are a powerful albeit in parts more challenging tool to

- two-hadron final states are a powerful albeit in parts more challenging tool to access spin-dependent distributions
- dihadron FFs very useful for collinear transversity extraction
 - however, reduction of fully differential cross section comes with a price tag: not all terms that vanish in theory vanish in practice due to experimental requirements

 - might lead to over-/underestimates of true size of extracted transversity Important to keep in mind when aiming for precision measurements

conclusions

- two-hadron final states are a powerful albeit in parts more challenging tool to access spin-dependent distributions
- dihadron FFs very useful for collinear transversity extraction
 - however, reduction of fully differential cross section comes with a price tag: not all terms that vanish in theory vanish in practice due to experimental requirements
 - might lead to over-/underestimates of true size of extracted transversity
 - Important to keep in mind when aiming for precision measurements
- hyperons and their two-hadron final states yet another way of accessing transversity and friends, as well as spin-dependent FFs
 - HERMES analysis of 1999-2007 data on longitudinal and longitudinal-totransverse spin transfer to Lambda and anti-Lambda to be released

conclusions

