Transversity 2024
 Trieste, 3-7 June 2024

Di-hadron fragmentation in reduced dimensionality
7th international workshop on

Transversity - a global approach

Transversity - a global approach

Transversity - a global approach

Transversity - a global approach

Transversity - a global approach

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

hadron-pair production

- instead of looking at final-state hadron polarization:
- use angular distribution of two hadrons to tag quark polarisation
- dihadron fragmentation a la Collins, Heppelmann \& Ladinsky [Nucl. Phys. B 420 (1994) 565]; Boer, Jacobs \& Radici [Phys. Rev. D 67 (2003) 094003]

hadron-pair production

- instead of looking at final-state hadron polarization:
- use angular distribution of two hadrons to tag quark polarisation
- dihadron fragmentation a la Collins, Heppelmann \& Ladinsky [Nucl. Phys. B 420 (1994) 565]; Boer, Jacobs \& Radici [Phys. Rev. D 67 (2003) 094003]
- dihadron FFs: alternative path to extract (even collinear!) transversity
- exploit orientation of hadron's relative momentum, correlate with target polarization

hadron-pair production

- complication: semi-inclusive DIS cross section with transverse-target polarization now differential in 9(!) variables
(even more for back-to-back hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation)
- first step: consider only collinear case -> 7 variables
$\frac{\mathrm{d}^{7} \sigma_{U T}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \mathrm{~d} \cos \theta \mathrm{~d} M_{\pi \pi}}=-\left|\boldsymbol{S}_{\boldsymbol{T}}\right| \sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}(1-y) \frac{1}{2} \sqrt{1-4 \frac{M_{\pi}^{2}}{M_{\pi \pi}^{2}}} \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1}^{q}(x) H_{1, q}^{\varangle}\left(z, M_{\pi \pi}, \cos \theta\right)$

partial-wave expansion

- Legendre expansion in $\cos \theta$:
$\frac{\mathrm{d}^{7} \sigma_{U U}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \mathrm{~d} \cos \theta \mathrm{~d} M_{\pi \pi}}=\sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}\left(1-y+\frac{y^{2}}{2}\right) f_{1}^{q}(x) D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right)$

$$
D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq D_{1, q}\left(z, M_{\pi \pi}\right)+D_{1, q}^{s p}\left(z, M_{\pi \pi}\right) \cos \theta+D_{1, q}^{p p}\left(z, M_{\pi \pi}\right) \frac{1}{4}\left(3 \cos ^{2} \theta-1\right)
$$

partial-wave expansion

- Legendre expansion in $\cos \theta$:

$$
\begin{array}{ll}
\pi^{+} \pi^{-} \mathrm{CM} \\
\text { frame }
\end{array} \boldsymbol{A}_{\boldsymbol{\pi}^{+}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{7} \sigma_{U U}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \operatorname{dcos} \theta \mathrm{~d} M_{\pi \pi}}=\sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}\left(1-y+\frac{y^{2}}{2}\right) f_{1}^{q}(x) D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \\
& D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq D_{1, q}\left(z, M_{\pi \pi}\right)+D_{1, q}^{s p}\left(z, M_{\pi \pi}\right) \cos \theta+D_{1, q}^{p p}\left(z, M_{\pi \pi}\right) \frac{1}{4}\left(3 \cos ^{2} \theta-1\right) \\
& \frac{\boldsymbol{P}_{\boldsymbol{\pi}^{-}}}{\mathrm{d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \operatorname{deos} \theta \mathrm{~d} M_{\pi \pi}}=-\left|\boldsymbol{S}_{\boldsymbol{T}}\right| \sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}(1-y) \frac{1}{2} \sqrt{1-4 \frac{M_{\pi}^{2}}{M_{\pi \pi}^{2}}} \sin \left(\phi_{R \perp}+z_{\pi^{+}}+z_{\pi^{-}}\right) \sin \theta h_{1}^{q}(x) H_{1, q}^{\varangle}\left(z, M_{\pi \pi}, \cos \theta\right)
\end{aligned}
$$

$$
H_{1, q}^{\varangle}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq H_{1, q}^{\varangle, s p}\left(z, M_{\pi \pi}\right)+H_{1, q}^{\varangle, p p}\left(z, M_{\pi \pi}\right) \cos \theta
$$

partial-wave expansion

- Legendre expansion in $\cos \theta$:

$$
\begin{gathered}
\pi^{+} \pi^{-} \mathrm{CM} \\
\text { frame } \\
\boldsymbol{P}_{\boldsymbol{\pi}^{-}} \\
z \equiv \boldsymbol{P}_{\pi^{+}}+z_{\pi^{-}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}^{7} \sigma_{U U}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \operatorname{d} \cos \theta \mathrm{~d} M_{\pi \pi}}=\sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}\left(1-y+\frac{y^{2}}{2}\right) f_{1}^{q}(x) D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \\
& D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq D_{1, q}\left(z, M_{\pi \pi}\right)+D_{1, q}^{s p}\left(z, M_{\pi \pi}\right) \cos \theta+D_{1, q}^{p p}\left(z, M_{\pi \pi}\right) \frac{1}{4}\left(3 \cos ^{2} \theta-1\right) \\
& \frac{\boldsymbol{P}_{\boldsymbol{\pi}^{-}}}{\mathrm{d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \operatorname{dcos} \theta \mathrm{~d} M_{\pi \pi}}=-\left|\boldsymbol{S}_{\boldsymbol{T}}\right| \sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}(1-y) \frac{1}{2} \sqrt{1-4 \frac{M_{\pi}^{2}}{M_{\pi \pi}^{2}}} \sin \left(\phi_{R \perp}+\phi_{\pi^{+}}+z_{\pi^{-}}\right) \sin \theta h_{1}^{q}(x) H_{1, q}^{\varangle}\left(z, M_{\pi \pi}, \cos \theta\right)
\end{aligned}
$$

$$
H_{1, q}^{\varangle}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq H_{1, q}^{\varangle, s p}\left(z, M_{\pi \pi}\right)+H_{1, q}^{\varangle, p p}\left(z, M_{\pi \pi}\right) \cos \theta
$$

- next step: integration over $\cos \theta \rightarrow 6$ remaining variables and less FFs to worry about

partial-wave expansion

- Legendre expansion in $\cos \theta$:
$\frac{\mathrm{d}^{7} \sigma_{U U}}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{R \perp} \mathrm{~d} \cos \theta \mathrm{~d} M_{\pi \pi}}=\sum_{q} \frac{\alpha^{2} e_{q}^{2}}{2 \pi s x y^{2}}\left(1-y+\frac{y^{2}}{2}\right) f_{1}^{q}(x) D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right)$

$$
D_{1, q}\left(z, M_{\pi \pi}, \cos \theta\right) \simeq D_{1, q}\left(z, M_{\pi \pi}\right)+D_{1, q}^{s p}\left(z, M_{\pi \pi}\right) \text { cr imix acCer }-\frac{1}{4}\left(3 \cos ^{2} \theta-1\right)
$$

simple case study: $e^{+} e^{-}$annihilation

basic assumptions:

- for simplicity: dihadron pair with equal-mass hadrons, e.g., pions
- $e^{+} e^{-}$annihilation, thus energy fraction z translates directly to energy/momentum of particles/system as primary energy is "fixed" (-> simplifies Lorentz boost)
- without loss of generality, focus on B factory and use primary quark energy $E_{0}=5.79 \mathrm{GeV}$
- minimum energy of each pion in lab frame: $0.1 \mathrm{E}_{0}$ (i.e., $z_{\text {min }}=0.1$)

application of Lorentz boost

- can easily apply Lorentz boost using the invariant mass of the dihadron M and its energy $z E_{0}$ to arrive at condition on θ, e.g., polar angle of pions in center-of-mass frame:

$$
\cos \theta \leq \frac{z-2 z_{\min }}{\sqrt{\left.\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)\right]}} E_{0} M
$$

- as both pions have to fulfil the constraint on the minimum energy:

$$
\begin{aligned}
& \cos (\pi-\theta)=-\cos \theta \leq \frac{z-2 z_{\min }}{\left.\sqrt{\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)}\right]} E_{0} M \\
& |\cos \theta| \leq \frac{z-2 z_{\min }}{\sqrt{\left.\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)\right]}} E_{0} M
\end{aligned}
$$

application of Lorentz boost

- can easily apply Lorentz boost using the invariant mass of the dihadron M and its energy $z E_{0}$ to arrive at condition on θ, e.g., polar angle of pions in center-of-mass frame:

$$
\cos \theta \leq \frac{z-2 z_{\min }}{\sqrt{\left.\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)\right]}} E_{0} M
$$

- as both pions have to fulfil the constraint on the minimum energy:

$$
\begin{aligned}
& \cos (\pi-\theta)=-\cos \theta \leq \frac{z-2 z_{\min }}{\left.\sqrt{\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)}\right]} E_{0} M \\
& |\cos \theta| \leq \frac{z-2 z_{\min }}{\sqrt{\left.\left[\left(z E_{0}\right)^{2}-M^{2}\right)\left(M^{2}-4 m_{\pi}^{2}\right)\right]}} E_{0} M
\end{aligned}
$$

- translates to a symmetric range around $\pi / 2$
(can be easily understood because at $\pi / 2$ the pions will have both the same energy in the lab and easily pass the $z_{\text {min }}$ requirement, while in the case of one pion going backward in the CMS, that pion will have less energy in the lab frame ... and maybe too little)

impact of $z_{\text {min }}=0.1$ on accepted polar range

- (again without loss of generality) let's assume $M=0.5 \mathrm{GeV}$:

- all theta below curve (and symmetrically above its mirror curve relative to dashed line at $\pi / 2$) are excluded
- clearly limited, especially at low z

partial-wave expansion of dihadron FF

- partial-wave expansion worked out in Phys. Rev. D67 (2003) 094002
- for the particular case here, use Phys. Rev. D74 (2006) 114007, in particular Eq. (12) [and later on Figure 5]:

$$
\begin{align*}
D_{1}^{q}\left(z, \cos \theta, M_{h}^{2}\right) \approx & D_{1, o o}^{q}\left(z, M_{h}^{2}\right)+D_{1, o l}^{q}\left(z, M_{h}^{2}\right) \cos \theta \\
& +D_{1, l l}^{q}\left(z, M_{h}^{2}\right) \frac{1}{4}\left(3 \cos ^{2} \theta-1\right) \tag{12}
\end{align*}
$$

- it is the first contribution $\left(D_{1,00}\right)$ that is used in "collinear extraction" of transversity
- it is also the only one surviving the integration over θ
- $D_{1,0 l}$ contribution vanishes upon integration over θ as long as the theta range is symmetric around $\pi / 2$ [as it is the case here]
- the $D_{1, \|}$ term, however, will in general contribute in case of only partial integration over θ
\Leftrightarrow the question is how much?

$D_{1, I l}$ contribution to dihadron fragmentation

- $D_{1, l l}$ is unknown and can't be calculated using first principles
- it can not be extracted from cross sections integrated over θ
- upon (partial) integration there is no way to disentangle the two contributions
- in PRD74 (2006) 114007, a model for dihadron fragmentation was tuned to PYTHIA and used to estimate the various partial-wave contributions
- its Figure 5 gives an indication about the relative size of $D_{1, \|}$ vs. $D_{1,00}$:

effect of partial integration

- as both contributions - $D_{1, \| l}$ and $D_{1,00}$ - will be affected by the partial integration, look at relative size of the $D_{1, \| l}$ to $D_{1,00}$ modulations when subjected to integration:

$$
\frac{D_{1, \|}}{D_{1,00}} \frac{\int_{\cos \left(\pi-\theta_{0}\right)}^{\cos \theta_{0}} d \cos \theta \frac{1}{4}\left(3 \cos ^{2} \theta-1\right)}{\int_{\cos \left(\pi-\theta_{0}\right)}^{\cos \theta_{0}} d \cos \theta}=-\frac{1}{4}\left(1-\cos ^{2} \theta_{0}\right) \frac{D_{1, \|}}{D_{1,00}}
$$

- without limit in the polar-angular range $\left(\theta_{0}=0\right) \rightarrow$ no contribution from $D_{1, \|} \quad$ [sanity check!]
- the relative size of the partial integrals reaches a maximum of 25% for $z=0.2$ [i.e., pions at 90 degrees in center-of-mass system]

effect of partial integration

- as both contributions - $D_{1, l l}$ and $D_{1,00}$ - will be affected by the partial integration, look at relative size of the $D_{1, \|}$ to $D_{1,00}$ modulations when subjected to integration:

$$
\frac{D_{1, \| 1}}{D_{1,00}} \frac{\int_{\cos \left(\pi-\theta_{0}\right)}^{\cos \theta_{0}} d \cos \theta \frac{1}{4}\left(3 \cos ^{2} \theta-1\right)}{\int_{\cos \left(\pi-\theta_{0}\right)}^{\cos \theta_{0}} d \cos \theta}=-\frac{1}{4}\left(1-\cos ^{2} \theta_{0}\right) \frac{D_{1, \|}}{D_{1,00}}
$$

- without limit in the polar-angular range $\left(\theta_{0}=0\right) \rightarrow$ no contribution from $D_{1, I I}$ [sanity check!]
- the relative size of the partial integrals reaches a maximum of 25% for $z=0.2$ [i.e., pions at 90 degrees in center-of-mass system]
- in order to estimate the $D_{1, \| l}$ contribution, one "just" needs the relative size of $D_{1, \|}$ vs. $D_{1,00}$, e.g., Figure 5 of PRD74 (2006) 114007
- let's take for that size 0.5 (rough value for $M=0.5 \mathrm{GeV}$)

effect of partial integration

- ... $D_{1, I I} / D_{1,00} \sim 0.5$ results in an up to $O(10 \%)$ effect on the measured cross section:

- depending on the sign of $D_{1, \| l}$, the partial integration thus leads to a systematic underestimation (positive $D_{1, \| I}$) or overestimation (negative $D_{1, \|)}$) of the "integrated" dihadron cross section
\Rightarrow leads to overestimate/underestimate of extracted transversity
switching gears: hyperon polarisation in DIS
switching gears: hyperon polarisation in DIS

Lambda production in DIS

$$
\begin{array}{r}
\vec{\gamma}^{*}+p \rightarrow \vec{\Lambda}+X \\
\qquad p \pi^{-}
\end{array}
$$

unpolarised (uniform) distribution
angle between proton momentum and
Λ spin in Λ rest frame

- "self-analyzing" particle due to its parity-violating decay
- polarization can be extracted just by measuring angular distribution of decay protons
- in praxis distorted by instrumental effects (cf. first part of talk)

Lambda production in DIS

$$
\begin{aligned}
& P_{X}^{\Lambda}=-P_{B} D_{X}(y)\left\{\frac{M}{Q} \frac{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) H_{1}^{q}(z)}{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) D_{1}^{q}(z)}+\frac{M^{\Lambda}}{Q} \frac{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) \tilde{G}_{T}^{q}(z)}{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) D_{1}^{q}(z)}\right\} \\
& P_{Y}^{\Lambda}=D_{Y}(y) \frac{M}{Q} \frac{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) D_{1 T}^{\perp(1) q}(z)}{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) D_{1}^{q}(z)} \\
& P_{Z}^{\Lambda}=P_{B} D_{Z}(y) \frac{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) G_{1}^{q}(z)}{\sum_{q} e_{q}^{2} x_{B} f_{1}^{q}\left(x_{B}\right) D_{1}^{q}(z)}
\end{aligned}
$$

- access to several novel spin-dependent FFs
- Y-component of polarization ("self-polarization") not correlated with beam polarization \Rightarrow drops out in beam-spin asymmetries
- concentrate on longitudinal and transverse spin transfer

$$
\frac{d N}{d \Omega_{p}}=\frac{d N_{0}}{d \Omega_{p}}\left(1+\alpha P_{L^{\prime}}^{\Lambda} \cos \theta_{p L^{\prime}}\right)
$$

unpolarised (uniform) distribution
tilts the uniform distribution

- acceptance distorts distribution

- heavy use of Monte Carlo to correct for acceptance
- major source of systematic uncertainty

$$
\frac{d N}{d \Omega_{p}}=\frac{d N_{0}}{d \Omega_{p}}\left(1+\alpha P_{L^{\prime}}^{\Lambda} \cos \theta_{p L^{\prime}}\right)
$$

unpolarised (uniform) distribution
tilts the uniform distribution

- NOMAD: basically 4π acceptance

- COMPASS: MC simulation of acceptance
- HERMES: cancel acceptance effect using two beam helicity states

(anti-)Lambda yields at HERMES

- HERA-I data of 1999-2000
- HERA-II data of 2003-2007
- DIS cuts
- $W^{2}>10 \mathrm{GeV}^{2}$
- $0.2<y<0.85$
- Q2 $>0.8 \mathrm{GeV}^{2}$

- total number of (anti) Λ is about 50 k (6 k)

Projected precision

- PDG updated values of asymmetry parameter
- rescaled older results that used previous ± 0.642

Projected precision

Projected precision

- results foreseen to be released for upcoming STRONG-2020 workshop "Present and future perspectives in Hadron Physics" -> to be presented by D. Veretennikov

conclusions

- two-hadron final states are a powerful albeit in parts more challenging tool to access spin-dependent distributions

conclusions

- two-hadron final states are a powerful albeit in parts more challenging tool to access spin-dependent distributions
- dihadron FFs very useful for collinear transversity extraction
- however, reduction of fully differential cross section comes with a price tag: not all terms that vanish in theory vanish in practice due to experimental requirements
- might lead to over-/underestimates of true size of extracted transversity
- important to keep in mind when aiming for precision measurements

conclusions

- two-hadron final states are a powerful albeit in parts more challenging tool to access spin-dependent distributions
- dihadron FFs very useful for collinear transversity extraction
- however, reduction of fully differential cross section comes with a price tag: not all terms that vanish in theory vanish in practice due to experimental requirements
- might lead to over-/underestimates of true size of extracted transversity
- important to keep in mind when aiming for precision measurements
- hyperons and their two-hadron final states yet another way of accessing transversity and friends, as well as spin-dependent FFs
- HERMES analysis of 1999-2007 data on longitudinal and longitudinal-totransverse spin transfer to Lambda and anti-Lambda to be released

Thank you!

