

Measurements of Transverse Spin Dependent $\pi^+\pi^-$ Azimuthal Correlation Asymmetry and Unpolarized $\pi^+\pi^-$ Cross Section in p+p Collisions at STAR at RHIC

TEMPLE UNIVERSITY*

(On behalf of the STAR Collaboration)

DOE NP contract: DE-SC0013405

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024 Bernd Surrow

Outline

Bernd Surrow

Probe transverse proton spin structure using high-energy polarized p+p collisions

• Important new insight into the transverse proton spin structure at STAR in polarized

p+p collisions at high energies using well established processes both theoretically and experimentally involving jets / hadrons

- Transversity-related measurements: Important insight into transverse spin structure - Need coupling of transversity (h1) to chiral-odd transverse spin dependent fragmentation function (FF):
 - Collins TMD FFs: Azimuthal single-spin asymmetries of charged pions in jets

$$\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\perp h/k}(z,k_T)$$

Di-hadron FFs: Azimuthal correlations of charged pion pairs

$$\sum_{i,j,k} h_1^{i/p_a}(x_a) \otimes f_1^{j/p_b}(x_b) \otimes H_1^{\triangleleft h_1 h_2/k}(z, M_h)$$

• Deepen our understanding concerning universality, factorization and evolution!

FF Review: A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91 (2016) 136.

- Proton spin structure in terms of parton distribution functions (PDFs)
- Three leading twist collinear PDFs, integrated over parton transverse momentum k_T :
 - $\ \ \, \square \ \ \, f_1(x) = \text{Unpolarized PDF}$
 - \square g₁(x) = Helicity PDF
 - $\square h_1^q(x) = \text{Transversity PDF}$
- ^D Motivation: Measurement of observable to constrain $h_1^q(x)$ in collinear framework in polarized p+p collisions employing chiral-odd di-hadron fragmentation function (DiFF)!

Bernd Surrow

Theoretical Foundation

Transversity

Correlation between nucleon transverse polarization and transverse polarization of quarks - no gluon transversity!

- First transversity global analysis by M. Radici and A. Bacchetta (Phys. Rev. Lett. 120, 192001 (2018))
- New global analysis by JAM global analysis (arXiV 2308.14857)!
- Important connection to Lattice QCD!

Theoretical Foundation

 $abla \vec{p}_h$ $p_{h,1}$ Observables for transversity - Theoretical formulation $\vec{p}_{h,2}$ Di-hadron channel: $p \uparrow + p \rightarrow h^+h^- + X$ $\vec{p}_a, \vec{s_a}$ • Asymmetry: $A_{UT}^{pp} = \frac{\mathcal{H}(M_h, P_{hT}, \eta)}{\mathcal{D}(M_h, P_{hT}, n)}$ \vec{p}_{b} **T ↓** = parton Transversity: Х polarization *i*, *j*, *k*, *l* = $\mathcal{H}(M_h, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c,d} \int_{x_c^{\min}}^{1} \mathrm{d}x_a \int_{x_c^{\min}}^{1} \frac{\mathrm{d}x_b}{z} h_1^a(x_a) f_1^b(x_b) \frac{\mathrm{d}\Delta\hat{\sigma}_{a^{\uparrow}b \to c^{\uparrow}d}}{\mathrm{d}\hat{t}} H_1^{\triangleleft,c}(z, M_h)$ parton flavors ϕ_{S} \vec{p}_{beam} $h_1 \leftrightarrow f_1, \ H_1^{\triangleleft} \leftrightarrow D_1$ $\overline{p}_{h,1}$ \vec{p}_{h} O Unpolarized cross-section: \overrightarrow{R} $\overline{p}_{h,2}$ $\mathcal{D}(M_h, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{l} \int_{x^{\min}}^{1} \mathrm{d}x_a \int_{x^{\min}}^{1} \frac{\mathrm{d}x_b}{z} f_1^a(x_a) f_1^b(x_b) \frac{\mathrm{d}\hat{\sigma}_{ab\to cd}}{\mathrm{d}\hat{t}} D_1^c(z, M_h)$

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024

Observables for transversity - Experimental measurement

• Di-hadron azimuthal correlation asymmetry, A_{UT} , for $p \uparrow + p \rightarrow h^+h^- + X$:

$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\triangleleft h_1 h_2 / k}(z, M_h)}{\sum_{i,j,k} f_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) D_1^{h_1 h_2 / k}(z, M_h)}$$

[□] Independent measurement of H_1^{\triangleleft} is required from e^+e^- experiments (e.g. BELLE!)

 $\square D_1^{h_1h_2}$ is least known, specifically for gluon fragmentation (New constrain from STAR!)

 $^{\bigcirc}$ Unpolarized di-hadron cross-section, $d\sigma_{UU}$, for $p\uparrow +p \rightarrow h^+h^- +X$:

 \square $d\sigma_{UU}$ is crucial for $D_1^{h_1h_2}$ providing access to quarks and

gluons

• $d\sigma_{UU}$ and A_{UT} allow model-independent extraction of transversity, $h_1^q(x)!$

□ First proof-of-principle measurements at 200GeV and 510GeV

STAR observed significant $\pi^+\pi^-$ correlation asymmetry, A_{UT} , using 200 GeV and 500 GeV

• $A_{UT} \propto h_1^q(x) H_1^{\triangleleft \pi^+ \pi^-}(z, M_h^2)$

Trieste, Italy, June 3 - 7, 2024

• A_{UT} enhanced around ρ -mass region.

Radici et. al. Phys. Rev. Lett. 120 (2018), 19 192001

 $x h_1^{u_v}$

0.3 0.2

Polarized p+p collider facility at BNL

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024 STAR

Overview of STAR experiment

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024

Polarized p+p data samples and kinematic coverage

Collision mode	proton-proton transverse									
Polarization type										
Year	2006	2011	2012	2015	2017	2022	2024			
\sqrt{s} (GeV)	200	500	200	200	510	508	200			
L _{int} (pb ⁻¹)	~ 1.8	~ 25	~ 22	~ 52	~ 320	~ 400	~ 190			
$\langle P_{\text{beam}} \rangle (\%)$	~ 60	~ 53	~ 57	~ 57	~55	~52				

Published IFF *A_{UT}* STAR, Phys. Lett. B 780 (2018) 332 STAR, Phys. Rev. Lett. 115 (2015) 242501 STAR Preliminaries @ $\sqrt{s} = 200 \text{ GeV}$ Unpolarized $\pi^+\pi^-$ Cross Section (2012) IFF Asymmetry (2015)

STAR IFF Preliminary @ $\sqrt{s} = 510 \text{ GeV}$

Planned IFF and Cross Section Measurements

Kinematic coverage

Collision mode	proton-proton									
Polarization type	transverse									
Year	2006	2011	2012	2015	2017	2022	2024			
\sqrt{s} (GeV)	200	500	200	200	510	508	200			
$L_{int} (pb^{-1})$	~ 1.8	~ 25	~ 22	~ 52	~ 320	~ 400	~ 190			
$\langle P_{\text{beam}} \rangle (\%)$	~ 60	~ 53	~ 57	~ 57	~55	~52				

- STAR Kinematic Coverage:
- Covers larger Q² values compared to HERMES and COMPASS.
- Intermediate x coverage, probing

predominantly valence quark region.

Asymmetry determination

 \circ Cross-ratio formula: ϕ_{RS} binning in A_{UT} extraction

$$A_{UT}\sin(\phi_{RS}) = \frac{1}{P} \frac{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS}+\pi)} - \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS}+\pi)}}{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS}+\pi)} + \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS}+\pi)}}$$

- Free from relative luminosity terms (cancels out in symmetric detector system!)
- $^{oldsymbol{O}}$ Two transverse polarization states: \uparrow , \downarrow
- 16 ϕ_{RS} bins of uniform widths over $[-\pi, \pi]$.
- Symmetry between $[-\pi, 0]$ and $[0, \pi]$ hemispheres.
- Count $\pi^+\pi^-$ yields in each 16 ϕ_{RS} bins for each

polarization states: $N^{\uparrow}(\phi_{RS}), N^{\downarrow}(\phi_{RS}).$

 $\phi_{\rm RS}$ binning scheme

Bernd Surrow

- Systematic uncertainties
 - STAR PID relies on the measured ionization energy loss (dE/dx) by the TPC at low p_T .
 - Time of Flight (TOF) helps to

improve the STAR PID, in conjunction with the TPC via dE/dx

• The fraction of proton, kaon, and electron (backgrounds) in the pion signal region estimates the PID systematic uncertainty

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024

D Asymmetry vs. pseudo-rapidity $\eta^{\pi^+\pi^-}$ at 200GeV and 510GeV

• A_{UT} increases with η at 200GeV (Run 15) and 510GeV (Run 17) - Sizable $h_1^q(x)$ expected for $\eta > 0$, i.e., large x!

- Improved PID treatment for 510GeV (Run 17) using TPC/TOF, whereas 200GeV (Run 15) based on TPC PID only so far, TOF PID incl. for final result for 200GeV (Run 15)
- Systematic uncertainties: PID and Trigger bias

D Asymmetry vs. invariant mass $M_{\text{inv}}^{\pi^+\pi^-}$ integrated in p_T at 200GeV and highest p_T bin at 510GeV

- A_{UT} asymmetry is enhanced around $M_{inv}^{\pi^+\pi^-} \sim 0.8$, consistent with the previous measurement and theory prediction
- $^{f O}$ Theory calculations overshoots the new measurement beyond the ho resonance peak
- Statistical precision is significantly improved by the new result

D Asymmetry vs. invariant mass $M_{\text{inv}}^{\pi^+\pi^-}$ in p_T bins at 200GeV and 510GeV

- $A_{UT}^{\sin(\phi_{RS})}$ vs $M_{inv}^{\pi^+\pi^-}$ in different p_T and $\eta^{\pi^+\pi^-}$ bins
- Signal grows stronger at higher p_T in forward $\eta^{\pi^+\pi^-}$ region / Resonance peak around $M_{inv}^{\pi^+\pi^-} \sim 0.8 \text{ GeV/c}^2 \sim M_{\rho}$.
- Backward $\eta^{\pi^+\pi^-}$ signal is small, mainly from low x quarks from polarized beam

$\pi^+\pi^-$ Asymmetry Results

D Asymmetry vs. transverse momentum p_T in $M_{inv}^{\pi^+\pi^-}$ bins at 200GeV and 510GeV

 $^f O$ Large asymmetry signal at higher $m p_T$ in forward $\eta^{\pi^+\pi^-}$ region. Stronger signal when $m \langle M_{
m inv}
angle \sim M_
ho$.

• Backward $\eta^{\pi^+\pi^-}$ signal ($\eta^{\pi^+\pi^-} < 0$) is small, mainly from low x quarks from polarized beam.

- Selection criteria
 - Di-hadron channel, $p + p \rightarrow \pi^+\pi^- + X$:
 - Inclusive $\pi^+\pi^-$ differential cross section:

 \Box As a function of invariant mass, $M_{inv}^{\pi^+\pi^-}$, in $|\eta|$ <1.

- \Box Much needed for the $D_1^{h_1h_2}$ extraction.
- \Box Access to $D_1^{h_1h_2/g}$.
- STAR Run 2012 dataset @ $\sqrt{s} = 200 \text{ GeV}$
- Triggers: JPO, JP1, JP2
- Lower trigger threshold provides better gluon sensitivity than Run 2015.
- $\pi^+\pi^-$ construction is same as in the IFF analysis,

except for the track $p_T > 0.5$ GeV/c.

Cross-section determination and systematic uncertainties

- **Bin Correlation Matrix** O PYTHIA simulated events, reconstructed through GEANT package embedded with real collision events to effectively reconstruct STAR detector responses (Embedding) 0.8
- Unfolding accounts for the bin migration effect and backgrounds
- 0.4 Unfolding is performed for each trigger, allowing independent measurement of triggered cross-0.2 1.5 section

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024

0.6

- Preliminary di-hadron cross-section result
 - Top Panel:
 - □ First unpolarized $\pi^+\pi^-$ cross-section measurement
 - Good agreement in comparison to
 PYTHIA simulation and JAMDiFF
 preduction
 - O Bottom Panel:
 - Systematic uncertainties (Green band!)
 - Statistical uncertainties (Red band!)
 - Relative difference to PYTHIA / JAMDiFF shown in black/blue
 - Access to $D_1^{h_1h_2}$ for gluons
 - Path to model-independent extraction of

Summary and Outlook

7th International Workshop on Transverse Phenomena in Hard Processes / Transversity 2024 Trieste, Italy, June 3 - 7, 2024 Bernd Surrow

- Outlook
 - Precision measurement of IFF asymmetries for pions / kaons from 2015+2024 at 200GeV and 2017+2022 at 510GeV
 - Planned cross-section measurements for pions at 510GeV and Kaons at 200/510GeV

