Measurements of Transverse Spin Dependent $\pi^{+} \pi^{-}$
Azimuthal Correlation Asymmetry and Unpolarized $\pi^{+} \pi^{-}$ Cross Section in p+p Collisions at STAR at RHIC

Bernd Surrow
T TEMPLE

Outline

- Theoretical Foundation
- RHIC Collider and STAR experiment

Analysis Details $-\pi^{+} \pi^{-}$Asymmetry

- $\pi^{+} \pi^{-}$Asymmetry Results

Theoretical foundation

ㅁ Probe transverse proton spin structure using high-energy polarized p+p collisions

O Important new insight into the transverse proton spin structure at STAR in polarized
$p+p$ collisions at high energies using well established processes both theoretically and experimentally involving jets / hadrons

O Transversity-related measurements: Important insight into transverse spin structure - Need coupling of transversity $\left(h_{1}\right)$ to chiral-odd transverse spin dependent fragmentation function (FF):

Collins TMD FFs: Azimuthal single-spin asymmetries of charged pions in jets

$$
\sum_{i, j, k} h_{1}^{i / p_{a}}\left(x_{a}\right) f_{1}^{j / p_{b}}\left(x_{b}\right) H_{1}^{\perp h / k}\left(z, k_{T}\right)
$$

D Di-hadron FFs: Azimuthal correlations of charged pion pairs

$$
\sum_{i, j, k} h_{1}^{i / p_{a}}\left(x_{a}\right) \otimes f_{1}^{j / p_{b}}\left(x_{b}\right) \otimes H_{1}^{\varangle h_{1} h_{2} / k}\left(z, M_{h}\right)
$$

O Deepen our understanding concerning universality, factorization and evolution!

FF Review: A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91 (2016) 136.

Theoretical Foundation

- Proton spin structure

O Proton spin structure in terms of parton distribution functions (PDFs)
0 Three leading twist collinear PDFs, integrated over parton transverse momentum k_{T} :

- $\mathrm{f}_{1}(\mathrm{x})=$ Unpolarized PDF
- $\mathrm{g}_{1}(\mathrm{x})=$ Helicity PDF
- $h_{1}^{q}(x)=$ Transversity PDF
- Motivation: Measurement of observable to constrain $h_{1}^{q}(x)$ in collinear framework in polarized p+p collisions employing chiral-odd di-hadron fragmentation function (DiFF)!

Theoretical Foundation

- Transversity

Correlation between nucleon transverse polarization and transverse polarization of quarks - no gluon transversity!

O First transversity global analysis by M. Radici and A. Bacchetta (Phys. Rev. Lett. 120, 192001 (2018))

O New global analysis by JAM global analysis (arXiV 2308.14857)!

- Important connection to Lattice QCD!

Theoretical Foundation

- Observables for transversity - Theoretical formulation

O Di-hadron channel: $p \uparrow+p \rightarrow h^{+} h^{-}+X$

- Asymmetry: $\quad A_{U T}^{p p}=\frac{\mathcal{H}\left(M_{h}, P_{h T}, \eta\right)}{\mathcal{D}\left(M_{h}, P_{h T}, \eta\right)}$

Transversity:

$\mathcal{H}\left(M_{h}, P_{h T}, \eta\right)=2 P_{h T} \sum_{i} \sum_{a, b, c, d} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} h_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \Delta \hat{\sigma}_{a^{\uparrow} \nmid b \rightarrow c}{ }^{\dagger} d}{\mathrm{~d} \hat{t}} H_{1}^{\varangle, c}\left(z, M_{h}\right)$

$$
h_{1} \leftrightarrow f_{1}, \quad H_{1}^{\triangleleft} \leftrightarrow D_{1}
$$

O Unpolarized cross-section:

$\mathcal{D}\left(M_{h}, P_{h T}, \eta\right)=2 P_{h T} \sum_{i} \sum_{a, b, c, d} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow c d}}{\mathrm{~d} \hat{t}} D_{1}^{c}\left(z, M_{h}\right)$

Theoretical Foundation

- Observables for transversity - Experimental measurement

O Di-hadron azimuthal correlation asymmetry, $A_{U T}$, for $p \uparrow+p \rightarrow h^{+} h^{-}+X$:

$$
A_{U T}=\frac{d \sigma_{U T}}{d \sigma_{U U}}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \propto \frac{\sum_{i, j, k} h_{1}^{i / p_{a}}\left(x_{a}\right) f_{1}^{j / p_{b}}\left(x_{b}\right) H_{1}^{\Varangle h_{1} h_{2} / k}\left(z, M_{h}\right)}{\sum_{i, j, k} f_{1}^{i / p_{a}}\left(x_{a}\right) f_{1}^{j / p_{b}}\left(x_{b}\right) D_{1}^{h_{1} h_{2} / k}\left(z, M_{h}\right)}
$$

- Independent measurement of H_{1}^{\Varangle} is required from $e^{+} e^{-}$experiments (e.g. BELLE!)
- $D_{1}^{h_{1} h_{2}}$ is least known, specifically for gluon fragmentation (New constrain from STAR!)

0 Unpolarized di-hadron cross-section, $d \sigma_{U U}$, for $p \uparrow+p \rightarrow h^{+} h^{-}+X$:

- $d \sigma_{U U}$ is crucial for $D_{1}^{h_{1} h_{2}}$ providing access to quarks and gluons
$\bigcirc d \sigma_{U U}$ and $A_{U T}$ allow model-independent extraction of transversity, $h_{1}^{q}(x)$!

Theoretical Foundation

- First proof-of-principle measurements at 200 GeV and 510 GeV

Radici et. al. Phys. Rev. Lett. 120 (2018), 19192001

0 STAR observed significant $\pi^{+} \pi^{-}$correlation asymmetry, $A_{U T}$, using 200 GeV and 500 GeV

○ $A_{U T} \propto h_{1}^{q}(x) H_{1}^{\triangleleft \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right)$

- $A_{U T}$ enhanced around ρ-mass region.

RHIC Collider and STAR Experiment

- Polarized $p+p$ collider facility at BNL

RHIC Collider and STAR Experiment

ㅁ Transverse spin-polarized p+p production runs
O Di-hadron FFs: 2006 at 200 GeV and 2011 at 500 GeV measure

O TMD Collins FFs: 2012 / 2015 at 200 GeV and 2011 at 500 GeV measurements

O Large data samples in 2015 at 200 GeV and 2017 / 2022 at 510 GeV !

RHIC Collider and STAR Experiment

- Overview of STAR experiment

RHIC Collider and STAR Experiment

- Polarized $p+p$ data samples and kinematic coverage

RHIC Collider and STAR Experiment

- Kinematic coverage

Collision mode	proton-proton						
Polarization type	transverse						
Year	2006	2011	2012	2015	2017	2022	2024
$\sqrt{\mathrm{s}}(\mathrm{GeV})$	200	500	200	200	510	508	200
$\mathrm{L}_{\text {int }}\left(\mathrm{pb}^{-1}\right)$	~ 1.8	~ 25	~ 22	~ 52	~ 320	~ 400	~ 190
$\left\langle\mathrm{P}_{\text {beam }}\right\rangle(\%)$	~ 60	~ 53	~ 57	~ 57	~ 55	~ 52	

STAR Kinematic Coverage:
O Covers larger Q^{2} values compared to HERMES and COMPASS.

O Intermediate \times coverage, probing predominantly valence quark region.

Analysis details $-\pi^{+} \pi^{-}$Asymmetry

- Kinematic variables and selection cuts

Polarized parton fragments to $\pi^{+} \pi^{-}$:

Two crucial vectors: $\vec{p}_{h}=\vec{p}_{h_{1}}+\vec{p}_{h_{2}}$ and $\vec{R}=\frac{1}{2}\left(\vec{p}_{h_{1}}-\vec{p}_{h_{2}}\right)$
${ }^{\circ}$ Access to the quark polarization via correlation: $\overrightarrow{\mathrm{S}} \cdot \overrightarrow{\mathrm{R}} \times \overrightarrow{\mathrm{p}}_{\mathrm{h}}$
Scattering plane

O Pion identification by measuring the ionization energy loss ($\mathrm{dE} / \mathrm{dx}$) with $p_{T}^{\pi}>1.5 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<1$
${ }^{\circ}$ Oppositely charged pion pairs, $\pi^{+} \pi^{-}$
O Direction of $\overrightarrow{\mathrm{R}}$ always points from π^{-}to $\pi^{+} \mathrm{A}_{\mathrm{UT}}$ gets otherwise diluted

$\pi^{+} \pi^{-}$reaction plane

Analysis details $-\pi^{+} \pi^{-}$Asymmetry

- Asymmetry determination

O Cross-ratio formula: $\phi_{R S}$ binning in $A_{U T}$ extraction
$A_{U T} \sin \left(\phi_{R S}\right)=\frac{1}{P} \frac{\sqrt{N^{\uparrow}\left(\phi_{R S}\right) N^{\downarrow}\left(\phi_{R S}+\pi\right)}-\sqrt{N^{\downarrow}\left(\phi_{R S}\right) N^{\uparrow}\left(\phi_{R S}+\pi\right)}}{\sqrt{N^{\uparrow}\left(\phi_{R S}\right) N^{\downarrow}\left(\phi_{R S}+\pi\right)}+\sqrt{N^{\downarrow}\left(\phi_{R S}\right) N^{\uparrow}\left(\phi_{R S}+\pi\right)}}$
O Free from relative luminosity terms (cancels out in symmetric detector system!)

0 Two transverse polarization states: \uparrow, \downarrow
O $16 \phi_{R S}$ bins of uniform widths over $[-\pi, \pi]$.
O Symmetry between $[-\pi, 0]$ and $[0, \pi]$ hemispheres.
O Count $\pi^{+} \pi^{-}$yields in each $16 \phi_{R S}$ bins for each polarization states: $\mathrm{N}^{\uparrow}\left(\phi_{\mathrm{RS}}\right), \mathrm{N}^{\downarrow}\left(\phi_{\mathrm{RS}}\right)$.

$\phi_{\text {RS }}$ binning scheme

Analysis details $-\pi^{+} \pi^{-}$Asymmetry

- Systematic uncertainties

O STAR PID relies on the measured ionization energy loss ($\mathrm{dE} / \mathrm{dx}$) by the TPC at low p_{T}.
O Time of Flight (TOF) helps to improve the STAR PID, in conjunction with the TPC via $\mathrm{dE} / \mathrm{dx}$

O The fraction of proton, kaon, and electron (backgrounds) in the pion signal region estimates the PID systematic uncertainty

$\pi^{+} \pi^{-}$Asymmetry Results

- Asymmetry vs. pseudo-rapidity $\eta^{\pi^{+} \pi^{-}}$at 200 GeV and 510 GeV

- $A_{U T}$ increases with η at 2006eV (Run 15) and 510GeV (Run 17) - Sizable $h_{1}^{q}(x)$ expected for $\eta>0$, i.e., large x !
- Improved PID treatment for 510 GeV (Run 17) using TPC/TOF, whereas 200 GeV (Run 15) based on TPC PID only so far, TOF PID incl. for final result for 200GeV (Run 15)
O Systematic uncertainties: PID and Trigger bias

$\pi^{+} \pi^{-}$Asymmetry Results

- Asymmetry vs. invariant mass $M_{\mathrm{inv}}^{\pi^{+} \pi^{-}}$integrated in p_{T} at 200 GeV and highest p_{T} bin at 510 GeV

O $A_{U T}$ asymmetry is enhanced around $M_{i n v}^{\pi^{+} \pi^{-}} \sim 0.8$, consistent with the previous measurement and theory prediction

O Theory calculations overshoots the new measurement beyond the ρ resonance peak

- Statistical precision is significantly improved by the new result

$\pi^{+} \pi^{-}$Asymmetry Results

- Asymmetry vs. invariant mass $M_{\mathrm{inv}}^{\pi^{+} \pi^{-}}$in p_{T} bins at 200 GeV and 510 GeV

O $\mathrm{A}_{\mathrm{UT}}^{\sin \left(\phi_{\mathrm{RS}}\right)}$ vs $\mathrm{M}_{\text {inv }}^{\pi^{+} \pi^{-}}$in different p_{T} and $\eta \pi^{\pi^{+} \pi^{-}}$bins
O Signal grows stronger at higher p_{T} in forward $\eta^{\pi^{+} \pi^{-}}$region / Resonance peak around $\mathrm{M}_{\mathrm{inv}}^{\pi^{+} \pi^{-}} \sim 0.8 \mathrm{GeV} / \mathrm{c}^{2} \sim$ M_{ρ}.

O Backward $\eta^{\pi^{+} \pi^{-}}$signal is small, mainly from low \timesquarks from polarized beam

$\pi^{+} \pi^{-}$Asymmetry Results

Asymmetry vs. transverse momentum p_{T} in $M_{\text {inv }}^{\pi^{+} \pi^{-}}$bins at 200 GeV and 510 GeV

O Large asymmetry signal at higher p_{T} in forward $\eta^{\pi^{+} \pi^{-}}$region. Stronger signal when $\left\langle\mathrm{M}_{\text {inv }}\right\rangle \sim \mathrm{M}_{\rho}$.
O Backward $\eta^{\pi^{+} \pi^{-}}$signal $\left(\eta^{\pi^{+} \pi^{-}}<0\right)$ is small, mainly from low \times quarks from polarized beam.

Analysis details $-\pi^{+} \pi^{-}$Cross-Section

- Selection criteria

O Di-hadron channel, $p+p \rightarrow \pi^{+} \pi^{-}+X$:

O Inclusive $\pi^{+} \pi^{-}$differential cross section:

- As a function of invariant mass, $M_{i n v}^{\pi^{+} \pi^{-}}$, in $|\eta|<1$.
- Much needed for the $D_{1}^{h_{1} h_{2}}$ extraction.

O STAR Run 2012 dataset @ $\sqrt{s}=200 \mathrm{GeV}$
- Triggers: JPO, JP1, JP2

O Lower trigger threshold provides better gluon sensitivity than Run 2015.

O $\pi^{+} \pi^{-}$construction is same as in the IFF analysis, except for the track $p_{T}>0.5 \mathrm{GeV} / \mathrm{c}$.

Analysis details $-\pi^{+} \pi^{-}$Cross-Section

- Cross-section determination and systematic uncertainties

O PYTHIA simulated events, reconstructed through GEANT package embedded with real collision events to effectively reconstruct STAR detector responses (Embedding)

O Unfolding accounts for the bin migration effect and backgrounds
O Unfolding is performed for each trigger, allowing independent measurement of triggered crosssection

Analysis details $-\pi^{+} \pi^{-}$Cross-Section

- Preliminary di-hadron cross-section result
- Top Panel:
- First unpolarized $\pi^{+} \pi^{-}$cross-section measurement
- Good agreement in comparison to PYTHIA simulation and JAMDiFF preduction

O Bottom Panel:

- Systematic uncertainties (Green band!)
- Statistical uncertainties (Red band!)
- Relative difference to PYTHIA / JAMDiFF shown in black/blue

O Access to $D_{1}^{h_{1} h_{2}}$ for gluons
O Path to model-independent extraction of $h_{1}(x)$

Summary and Outlook

- Summary

O New measurements of IFF dipion asymmetries at 200 GeV
(2015) and 510GeV (2017)

O First di-pion cross-section measurement at 200 GeV (2012)

Summary and Outlook

- Outlook

O Precision measurement of IFF asymmetries for pions / kaons from 2015+2024 at

200 GeV and $2017+2022$ at 510 GeV

O Planned cross-section measurements for pions at 510 GeV and Kaons at $200 / 510 \mathrm{GeV}$

