## Results from $e^+e^-$ – related to TMDs and the extraction of transversity





A more complete description of the Belle II QCD program can be found in "<u>Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper</u>" e-Print: 2204.02280 [hep-ex]



#### **Anselm Vossen**





#### $e^+e^-$ is the cleanest process to access Fragmentation Functions

- FFs encode the non-perturbative link between perturbative QCD processes and the observed final state particles
- Determining final state polarization needs self analyzing decay ( $\Lambda$ )



| Parton polarization $\rightarrow$ | Spin averaged                                                                   | longitudinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | transverse                                                                                                                                                                                                  |
|-----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hadron Polarization 🗸             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |
| spin averaged                     | $D_1^{h/q}(z, p_T) = \left( \bullet \rightarrow \bigcirc \right)$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H_1^{\perp h/q}(z, p_T) = \left( \stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right) - \left( \stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right)$                                       |
| longitudinal                      |                                                                                 | $G_1^{\Lambda/q}(z,p_T) = \underbrace{\left( \bullet \bullet \to \bullet \right)}_{-} \underbrace{\left( \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \right)}_{-} \underbrace{\left( \bullet \bullet \bullet \bullet \bullet \bullet \bullet \right)}_{-} \underbrace{\left( \bullet \right)}_{-} \left( \bullet \bullet$ | $H_{1L}^{h/q}(z, p_T) \qquad \left( \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right) - \left( \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right)$       |
| Transverse (here $\Lambda$ )      | $D_{1T}^{\perp \Lambda/q}(z, p_T) = \left( \bullet \rightarrow \bullet \right)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H_1^{\Lambda/\mathbf{q}}(z,p_T) = \left[ \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[ \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$ |
|                                   |                                                                                 | $G_{1T}^{h/q}(z,p_T) = \left( \bullet \to \bullet \bullet \right) - \left( \bullet \to \bullet \bullet \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H_{1T}^{\perp\Lambda/q}(z,p_T) = \left[ \begin{array}{c} \bullet \\ \bullet \end{array} \right] - \left[ \begin{array}{c} \bullet \\ \bullet \end{array} \right]$                                          |
|                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |

# Fragmentation Functions appear almost always when accessing partonic structure of the nucleon

- Proton Structure extracted using QCD factorization theorem
- FFs contribute to virtually all processes
- Particular important for transverse spin structure



## **Role of b-factories**

- •Asymmetric-energy e<sup>+</sup>e<sup>-</sup> collider •  $\sqrt{s} \sim 10.6 \text{ GeV} (\Upsilon(4S))$ •  $\beta\gamma$ =0.425 • L ~ 1 ab<sup>-1</sup> **The second second**

- Dominated by B factories
- Limited lever arm in  $\sqrt{s}$  in particular at high z
- Precision data includes charged single hadrons  $\pi$ , K, p, D, baryons...
- Well described at NNLO (SIA) or NLO (SIDIS) (e.g. DEHSS /MAPFF)
- BES III with  $\sqrt{s} < 4 \text{ GeV}$  tests framework at low energies



\_ (albeit low statistics)



# The future is now: Next Generation B factory SuperKEKB





Beam currents *only* a factor of two higher than KEKB (~PEPII)

"nano-beams" are the key; vertical beam size is 50nm at the IP

- Belle II already delivered world record luminosity
- Belle II aims to have significantly higher luminosity, current record: 4.7x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>.
- Future P5 recommendation: FCC-ee or muon collider up to 10 TeV
  - $\frac{1}{s}\sigma$  dependence, dataset of 10s of  $ab^{-1}$  $\Rightarrow$  no precision measurement outside the Z resonance

## Short and long term goals



• What Belle II brings to the table for existing channels

-High statistics

→complex final states

 $\rightarrow$ complementary to EIC

-Trigger  $\rightarrow$  low multiplicities

## Single Hadron FFs from Belle & BaBar



#### **Unpolarized single hadrons**

- Update with better ISR correction
- Correlated and uncorrelated uncertainties separated → improve global unpolarized FF fits



#### **Polarized FFs from Belle**



#### • Statistics Hungry, only possible at B-factories

### $P_T$ dependence of $H_1^{\perp}$ from Belle/BaBar/BESIII

- Trend consistent with BaBar
- Direct comparison difficult due to different correction schemes (thrust vs  $q\bar{q}$  -axis)

10



- Results from BESIII are largely consistent with TMD evolution
- Ditto:  $\Lambda^{\uparrow}$  from LEP to Belle energies

*Phys.Rev.D* 100 (2019) 9, 092008



#### BaBar: $K^+K^-$ asymmetries $> \pi^+\pi^-$



•*Phys.Rev.D* 92 (2015) 11, 111101

# Consistency between Neutral and charged pions



#### **Transverse momentum distributions**

- 0.85< Thrust T < 0.9
  - Transverse momenta mostly Gaussian
  - Possible deviations for large  $P_{hT}$  tails, but also large uncertainties





# New measurements and fits to $\pi^0, K_S, \eta$ from BES III

 New fit to SIA data incorporating higher twist shows good agreement with BES III data down to 2 GeV



e-Print: <u>2404.11527</u>

# Vector meson plans

- Asymmetries of vector mesons can be large
- Contributions to single hadron fragmentation
- →Study vector meson decay
- Ongoing: Decaying particle FFs



 Study the explicit differential cross sections for VMs, D mesons as a function of x<sub>p</sub>



 Example from MC at Belle energies (for 4π acceptanc e):

#### Step beyond single hadrons: Dihadron Fragmentation Functions

#### Additional Observable:

 $\vec{R} = \vec{P_1} - \vec{P_2}$ : The relative momentum of the hadron pair is an additional degree of freedom:

More degrees of freedom  $\rightarrow$  More information about correlations in final state  $\rightarrow$  See e.g. recent extraction of Twist3 e(x) (e-Print: 2203.14975 [hep-ph])



the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin

| Parton polarization $\rightarrow$ | Spin averaged    | longitudinal                                                                                       | transverse                                                                             |
|-----------------------------------|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Hadron Polarization 🗸             |                  |                                                                                                    |                                                                                        |
| spin averaged                     | $D_1^{h/q}(z,M)$ |                                                                                                    | $H_1^{\perp h/q}(z, p_T M, (Ph), \theta)$ 'Di-hadron Collins'                          |
| longitudinal                      |                  |                                                                                                    |                                                                                        |
| Transverse                        |                  | $G_1^{\perp}(z,M,P_h,\theta)$ =<br>T-odd, chiral-even<br>→ jet handedness<br>QCD vaccum strucuture | H <sub>1</sub> *(z,M, (P <sub>h</sub> ), $\theta$ )=.<br>T-odd, chiral-odd<br>Colinear |

### **Di-Hadron measurements at Belle**



Relative momentum of hadrons can carry away angular momentum

- Relative and total angular momentum  $\rightarrow$ In principle endless tower of FFs
- Polarization dependent FFs: Interference of QCD amplitudes with different angular momentum→Dependence on P<sup>m</sup><sub>l</sub>(θ)

→ Partial wave decomposition can extract different interference terms (difficult for Single H FFs)

# Acceptance Impact on Partial Wave composition



- Consider dependence of FFs on decay angle  $\theta$
- Higher order PWs lead to different moments in θ and φ
  → These are different FFs that are mixed by the acceptance
  → dependent on experiment, different evolution
- →up to 10% effect on transversity extraction





### **Belle II prospects**

- Full partial wave decomposition → full description of twoparticle correlations in hadronization
- $\rightarrow$ unbinned unfolding

Describe hadronization dynamics
 Bridge between FFs and MCEGs

- Currently Underway using Belle II data:
  - -Back-to-back di-hadron (in-jet and using Thrust axis)
  - -Near term plans:
    - $G_1^{\perp}$  sensitive measurement
    - Kaons

19



### Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner 3P<sub>0</sub> model, A. Kerbizi et al, Comput.Phys.Commun. 272 (2022))



#### Twist-2 $A_{LU}$ Amplitudes



 $(\mathbf{q})(\mathbf{\overline{q}})$ 

Color Flux Tube

<u>q</u> q Distance

New Quark Pair Creatio

Time

- See more MC tuning studies in QCD whitepaper
- E.g. charge, flavor correlations (Phys.Rev.D 105 (2022) 5, L051502)

#### G Matousek

#### $\pi^0$ and Kaon combinations (SIDIS@CLAS12)



• 
$$A_{LU} \propto \frac{f(x,k_t)G_1^{\perp}(z,p_t)}{f(x,k_t)D(z,p_t)} \approx \frac{G_1^{\perp}}{D_1}$$

C Pecar

- Kaon  $\gg$  Pions for sp interference (not all PW terms)
  - -FF effect?
  - $-\pi^{\pm}/\pi^{0}$  ordering dependent on PW

### Brand New Opportunities at Belle II: Precision Jet Physics in $e^+e^-$

- Jet physics (will) play an important role at the EIC and LHC
- Precision measurements in  $e^+e^$ annihilation will test current theoretical understanding ( $N^3LL$ )
- Lower energies like Belle in particular sensitive to hadronization effects
- Example: Transverse Momentum Imbalance ← → TMD framework



22

FIG. 1. Illustration of the neutral-current DIS process where a jet is recoiling the final-state electron in the laboratory frame.







### Azimuthal Asymmetries in back-toback jets

 New suggestion: Measure Colllinslike back-to-back azimuthal correlations for jets

→Sensitive to transversity



The time-reversal odd side of a jet •Fund.Res. 3 (2023) 346-350, e-Print: <u>2104.03328</u> [hep-ph]



- Current Belle II projections for acceptance effects encouraging
- Charm contributions will be important
- Analysis about to enter Collaboration Review

#### Belle II Makes Precision $\Lambda$ program possible!



# Summary

- FFs from  $e^+e^-$  are crucial for the extraction of transversity and TMDs from SIDIS, pp data
- Data from *B*-factories is crucial for high precision measurements
- Continued effort is needed in precision era to provide input and complimentarity for JLab12/EIC
- A recent White Paper lays out the QCD program for Belle II

#### Some recent efforts shown

- Updated single/di-hadron cross-sections
- $p_T$  dependence of Collins effect and  $D_1$
- Polarization dependent kaon FFs
- Polarizing  $\Lambda$

#### Future directions

- Partial wave decomposition of di-hadron asymmetries/cross-sections
- Di-hadron asymmetries/cross-sections including  $\pi^0$ , Kaons
- Jets

#### Other interesting topics not discussed

- Collins effect for charm quarks and heavy quark fragmentation
- Studies of nonperturbative beyond QCD factorization theorems
- Entanglement studies
- Polarized Belle II

# $\pi^0/\eta$ from Belle

• Rise with  $z_{1,2}$ , similar to charged pions



BaBar  $K^+K^-$ ,  $\pi K$  pairs: Phys.Rev.D 92 (2015) 11, 111101

# Probe String Fragmentation in charge, flavor correlations



- Belle II mainly in non-perturbative regime
- M. Mouli Mondal @ CPHI2022
- See more MC tuning studies in QCD whitepaper

*Phys.Rev.D* 105 (2022) 5, L051502

### Jet mass

- Proposal to polarize electron beam at SuperKEKB  $\rightarrow$  Whitepaper: e-Print: 2205.12847
- Can access jet mass
- "QCD Higgs mechanism"



#### See also A. Accardi, A. Signori, Phys.Lett.B 798 (2019) 134993

## Entanglement

Handedness



# Access of FFs for light mesons in e<sup>+</sup>e<sup>-</sup> (spin averaged case)

$$\frac{1}{\sigma_{\rm tot}} \frac{d\sigma^{e^+e^- \to hX}}{dz} = \frac{1}{\sum_q e_q^2} \left( 2F_1^h(z,Q^2) + F_L^h(z,Q^2) \right),$$



 $2F_1^h(z,Q^2) = \sum_q e_q^2 \left( D_1^{h/q}(z,Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left( C_1^q \otimes D_1^{h/q} + C_1^g \otimes D_1^{h/g} \right)(z,Q^2) \right)$ 

- Cleanest process→testbed for QCD calculations
- Limited access to flavor
  - (Use different couplings to  $\gamma^*$  and  $Z^0$ )
  - -(Use polarization (SLD) and parity violating coupling)
  - Use back-to-back correlations for different flavor combinations
- Limited access to gluon FF
  - From evolution
  - From three jet events (but theory treatment not clear)

# Belle II can signficcantly improve our knowledge of heavy flavor fragmentation

- Single hadron differential cross sections for Λ, Σ, Ξ, Ω, Λ<sub>c</sub>, Σ<sub>c</sub>, Ξ<sub>c</sub>, Ω<sub>c</sub> (etc) vs x<sub>p</sub> available
- Heavier particles generally plotted vs normalized momentum
- Unlike light hadrons charmed hadrons contain large fraction of charm quark momentum → peaked at larger x<sub>p</sub>
- Belle analysis of vector mesons  $\rho, \omega, K^*$  and D mesons underway
- Belle II prospects: Multidimensional extraction,  $p_T$  dependence

PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)



# Mass Dependence of $\sigma \rightarrow$ test hadronization model



Found consistent with di-quark model

PRD 97, 072005 (2018)

**Field, Feynman (1977):** Fragmentation functions encode the information on how partons produced in hardscattering processes are turned into an observed colorless hadronic bound final-state [PRD 15 (1977) 2590]



- Complementary to the study of nucleon structure (PDFs)
- Cannot be computed on the lattice
- Questions to be asked
  - Macroscopic effect (distribution, polarization) of microscopic properties (quantum numbers)?
  - Effect of QCD vacuum the quark is traversing
  - Study of the formation of hadrons →e.g. Phys.Rev. D97 (2018) no.7, 072005

## MC tuning studies

- Event Shapes
- Jet rates vs resolution, hemisphere,
- Event rates relative to event plane (and  $z, p_T$ ), including baryons
- Multiplicities of resonance production ( $\rho$ ,  $\omega$ ,  $K^*$ ,  $\phi$ ,  $\Lambda$ ,  $\Sigma$ ,  $\Xi$ ,  $\Omega$ )
  - Ratios between pseudo-scalar and vector mesons (also important for cosmic events)
- Charge/strangeness/baryon number compensation along event axis

#### **Polarized Hyperon Production**

- Large  $\Lambda$  transverse polarization in unpolarized pp collision  $${}_{\text{PRL36, 1113 (1976); PRL41, 607 (1978)}}$$
- Caused by polarizing FF  $D_{1T}^{\perp}(z, p_{\perp}^2)$ ?
- Polarizing FF is chiral-even, has been proposed PRL105,202001 (2010) as a test of universality.
- FF counterpart of the Sivers function.
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed.
- First Observation at Belle !
- → Extraction of PFF (Cagliari, UCLA)



## What is the Belle II program?

- What Belle II brings to the table for existing channels
  - -High statistics
    - $\rightarrow$ complex final states
    - $\rightarrow$ complementary to EIC
  - -Trigger  $\rightarrow$  low multiplicities

- Highlights of the Hadronization program at Belle
  Jets
  Non factorizable hadronization observables
  g-2 related measurements
  w related measurements
  - $-\alpha_s$  related measurements

### Asymmetries sensitive to $G_1^{\perp}$



- sp –interference term larger for kaons than for pions (GeV)
- Not true for all interference terms (not shown)
- $M_{KK} > m_{\phi}$  can account for  $p_{\perp}$  <sup>3</sup>dependence

#### **Global fits of Dihadron FFs**



#### **Polarized Hyperon Production**

- Large  $\Lambda$  transverse polarization in unpolarized pp collision  $${}_{\text{PRL36, 1113 (1976); PRL41, 607 (1978)}}$$
- Caused by polarizing FF  $D_{1T}^{\perp}(z, p_{\perp}^2)$ ?
- Polarizing FF is chiral-even, has been proposed PRL105,202001 (2010) as a test of universality.
- FF counterpart of the Sivers function.
- OPAL experiment at LEP has studied transverse Λ polarization, no significant signal was observed.
- First Observation at Belle !
- → Extraction of PFF (Cagliari, UCLA)



#### Belle II Makes Precision $\Lambda$ program possible!



- (currently only for z dependence, introduces large uncertainties)
- $\Lambda^{\uparrow} \Lambda^{\uparrow}$  correlations  $\rightarrow$  Entanglement studies
- Extension to tensor polarized FFs: e-Print: 2206.11742 [hep-ph]
- Explore low  $p_T$  region (not shown here) with higher statistics and better tracking resolution

- Complementary Statistics to Λ program at the EIC
  - -Universality test
  - $-\Lambda$  FFs to extract polarized PDFs
  - Flavor separation

. . .

## What is the Belle II QCD program?

- What Belle II brings to the table for existing channels
  - -High statistics
    - $\rightarrow$ complex final states
    - $\rightarrow$ complementary to EIC
  - -Trigger  $\rightarrow$  low multiplicities

• Highlights of the Hadronization program at Belle II



# Belle II can signficcantly improve our knowledge of heavy flavor fragmentation

- Single hadron differential cross sections for Λ, Σ, Ξ, Ω, Λ<sub>c</sub>, Σ<sub>c</sub>, Ξ<sub>c</sub>, Ω<sub>c</sub> (etc) vs x<sub>p</sub> available
- Heavier particles generally plotted vs normalized momentum
- Unlike light hadrons charmed hadrons contain large fraction of charm quark momentum → peaked at larger x<sub>p</sub>
- Belle analysis of vector mesons  $\rho, \omega, K^*$  and D mesons underway
- Belle II prospects: Multidimensional extraction,  $p_T$  dependence

PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)



#### **Facilities**

#### **Concentrate on B2**

## World Data on e<sup>+</sup>e<sup>-</sup>

- Dominated by B factories
- Limited lever arm in  $\sqrt{s}$  in particular at high z
- Precision data includes charged single hadrons π, K, p, D, Λ, charmed baryons...



Phys.Rev.Lett. 111 (2013) 062002 (Belle) Phys.Rev. D88 (2013) 032011 (BaBar)



# The future is now: Next Generation B factory SuperKEKB





Beam currents *only* a factor of two higher than KEKB (~PEPII)

"nano-beams" are the key; vertical beam size is 50nm at the IP

Belle II already delivered world record luminosity

Belle II aims to have significantly higher luminosity, current record: 4.7x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>.

Future P5 recommendation: FCC-ee or muon collider up to 10 TeV

•  $\frac{1}{s}\sigma$ - dependence, dataset of 10s of  $ab^{-1}$  $\Rightarrow$  no precision measurement outside the Z resonance



#### Enter Belle II





#### Short and long term goals



Updated on 2024/04/11 19:55 JST

#### Pion fragmentation

- Light quarks symmetric <sup>D</sup>
- Dominated by favored fragmentation especially at high z
- Gluon substantial but falling off faster than quarks



DSS15: deFlorian et.al., Phys.Rev. D91 (2015) 014035

## Kaon fragmentation

- Strange quarks are dominating kaon fragmentation
- Also dominated by favored u quark fragmentation at high-z
- At lower z penalty for producing ss pair in fragmentation (u+u < s+s)</li>
- Charm fragmentation comparable (what about weak decays?)



DEHSS Phys. Rev. D 95 (2017) 9, 094019

#### From "your errors are too conservative" to "your errors are too precise"

*One group: "However we do not consider it because of a poor control of the degree of correlation of systematic uncertainties"* 

- Initial single hadron cross section measurement in very fine z binning, thus large bin-to-bin migration. Unfolding performed but assigned very conservative uncertainties → global fit's χ<sup>2</sup> generally too low for our data set
- Recent update ('20) with more realistic binning, much better understanding of all systematic uncertainty sources, correlated and uncorrelated uncertainties provided separately
- However, fitters would prefer:
  - all systematics separately (will be done in the future),
  - all systematics symmetric (INCORRECT!)



xFitter: Phys.Rev.D 104 (2021) 056019

#### **Basics**

#### Global fits of Dihadron FFs



### **IFF**, partial wave

#### **Kaons**

## Outlook

- Kharzeev paper?
- Opportunities paper

### **Transverse momentum**

- Add transverse momentum to Collins asymmetries<sup>2</sup>
- Currently only 1 or 2-dimensional extractions available (q<sub>t</sub>, z<sub>1</sub>x z<sub>2</sub>,  $p_{t1}x p_{t2}, z_1x p_{t1}$ )
- Increasing asymmetries with both z and pt, but pt reach limited
- Multidimensional extractions needed

11/2/2023



#### Quark transversity via Collins: Kaons

- Addition of kaon Collins fragmentation strongly needed for flavor decompositions of our strongly needed
- Large amount of potentially participating FFs well described by light and "heavy" favored and disfavored FFs
- Allows inclusion of HERMES and COMPASS kaon asymmetries (+eventually EIC) in fits
- Also: pion Collins at lower scale (BESIII) consistent with TMD evolution





#### Ongoing: Decaying particle FFs

- Study the explicit differential cross sections for VMs, D mesons as a function of x<sub>p</sub>
- Mostly mass distributions and fits well-behaved, except for  $\rho-\omega$  (interference) and more exotic resonances
- Also of interest for ultra highenergetic cosmic ray air shower research (muon problem)

• Example from MC at Belle energies (for  $4\pi$  acceptance):



Important resource for EIC, RHIC and HI physics

### Entanglement



## **Better: di-hadrons**





- First extraction of e(x)
- Further constrains from  $F_{UL}$  and  $F_{LL}$
- First signal for  $G_1^{\perp}$ 
  - Interesting resonance structure consistent with models

(e.g. Luo, Sun, Xie, Phys.Rev.D 101 (2020) 5, 054020)



### Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner 3P<sub>0</sub> model, A. Kerbizi et al, Comput.Phys.Commun. 272 (2022))





Time

 $(\mathbf{q})\overline{\mathbf{q}}$ 

Color Flux Tube

<u>q</u> Distance

New Quark Pair Creation



#### Near-exclusive $\pi^+\pi^-$ , $\pi^+\pi^0$ production

- ★ We can constrain/better understand the contribution of  $\rho^0$ ,  $\rho^+$  decays on our single hadron asymmetries by looking at near exclusive (M<sub>X</sub> < 1.1 GeV) channels
  - ★ Strong yet similar asymmetries observed (both productions came from struck u quark)

 $\rightarrow$ See talk by K. Joo



 ★ Different mechanism for neutral ρ<sup>0</sup> at high z (low |t|) → GPDs, gluon contributions

#### Dihadron Production $ep \rightarrow e\pi^{\pm}\pi^{0}(X)$



66

### Kaons



- Kaon  $\gg$  Pions
  - -Assuming u -quark dominance  $\rightarrow$  FF effect?
  - -Twist3 FF relevant?
  - $-\operatorname{Or} e(x)$  for strange quarks

## Asymmetries sensitive to $G_1^{\perp}$



- sp –interference term larger for kaons than for pions (GeV)
- Not true for all interference terms (not shown)
- $M_{KK} > m_{\phi}$  can account for  $p_{\perp}$  dependence

# Lambda Program at CLAS12

- Constituent Quark Model (CQM)
  - Predicts s quark carries 100% of the  $\Lambda$  hyperon spin
- "Do polarized *u*-quarks from current fragmentation transfer their longitudinal spin to the lambda?"  $\rightarrow$  Test spin structure



Part of planned extensive Lambda program% ith larger statistics: Transverse, polarizing...

# Summary and Outlook

 JLAB12 provides several orders of magnitude higher luminosity than any other lepton scattering facility!

#### High precision data in the valence region

- Proton, deuteron, helium targets
- Beam spin, longitudinal/transverse target polarizations
- Multidimensional measurements
- Analyses beyond leading twist/CFR regime

#### First results from BSAs and longitudinal spin asymmetries

- Precision data to extract TMDs
- New target-current correlations
- Intriguing flavor dependencies
- Insights into spin-orbit correlations in hadronization using partial wave decomposition

#### Future at CLAS12 and SoLID

- Full program with data with longitudinal target(s)
- Transverse target
- Modulations of the unpolarized cross-section

- ...

- EIC Complementarity
  - Phase space
  - Depolarization factors