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HADRON STRUCTURES

(kq)L = xP

(kq)T,y

(kq)T,x

⃗kq

⃗P
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PDF: fq/H(x; μ)
TMDPDF: f1,q/H(x, kT; μ, ζ)



FACTORIZATION FORMULA

Its range of applicability is provided by      

We have a non-perturbative evolution kernel, R[], (whose perturbative part is 
known at N3LO!!). We can work with different schemes (CSS, -prescription). 
We have a re-factorization of TMD at large transverse momentum in Wilson 
coefficients  (now at N3LO!!) and PDF (now used at NNLO!!, but N3LO on the way)    
PDF are just part of a model . Very useful but also problematic: PDF bias M. Bury, F. 
Hautmann, S. Leal-Gomez, I. S., A. Vladimirov, PZ, JHEP 10 (2022) 118   

δ =
qT

Q
≪ 1, fixed-qT, δ ∼ 0.25

ζ

Ff←h(x, b) = ∑
f′ 

f f
NP(x, b)∫

1

x

dy
y

Cf←f′ (y, LμOPE
, as(μOPE)) ff←h(x /y, μOPE)
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TMD flavor dependence included 

All the latest LHC datasets!  

W-boson production! (only Tevatron, ) 

Increased perturbative accuracy! ( : highest QCD 

perturbative precision in a non-perturbative extraction)  

Includes collinear PDF uncertainties! 

A full new fit to Drell-Yan data (627 points)

mT > 50 GeV

N4LL

V. Moos, I. S., A. Vladimirov, P. Zurita, arXiv:2305.07473 [hep-ph]

ART23
PUBLIC CODE ARTEMIDE,  
HTTPS://GITHUB.COM/VLADIMIROVALEXEY/ARTEMIDE-PUBLIC
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EVOLUTION KERNEL

𝒟(b, μ) = 𝒟small−b(b*, μ*) + ∫
μ

μ*

dμ′ 

μ′ 

Γcusp(μ′ ) + 𝒟NP(b),

b*(b) =
b

1 + b⃗2

B2
NP

, μ*(b) =
2e−γE

b*(b)
,𝒟NP(b) = bb* c0 + c1 ln ( b*

BNP )

We understand that both perturbative and non-perturbative elements 
should be combined.



OPTIMAL TMD

Γcusp(μ)ln ( μ2

ζμ(b) ) − γV(μ) = 2𝒟(b, μ)
d ln ζμ(b)

d ln μ2
.

𝒟(μ0, b) = 0, γF(μ0, ζ0) = 0.{
f1,q←h(x, b) ≡ f1,q←h(x, b, μ, ζμ)

f(x, b; μ, Q2) = ( Q2

ζμ(b) )
−𝒟(b,μ)

f(x, b)

The -prescriptionζ

Evolution decoupling

Scale independence



All the hottest data

CDF, D0
ATLAS

CMS

LHCb

PHENIX

STAR

E772
E605
E228

CDF, D0 (W-boson)

Total:

627 data points
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Figure 3. Distribution of data in the (x,Q) plane. Each data point can span large regions. The color

gradient darkens with an increasing number of data points contributing to a particular (x,Q) point.

where hqT i and hQi are the average values of qT and Q for the bin, and � is the relative uncorrelated
uncertainty. The second condition is actually needed only for the high-energy data, as it is satisfied
by all the data from the lower energy experiments with Q < 40 GeV. The selection rules of eq. (3.1)
allow us to keep control of the predictive power of the theory, and still incorporate a large amount
of data into the fit procedure. They are slightly softer than the rules used in refs. [7, 8], because
we plainly include all data with hqT i < 10 GeV.

The bulk of the data considered here has already been used in previous extractions, such
as [5–9]. This includes the fixed-target E288, E605, E772 experiments from FermiLab (263 data
points) [56–58], the Z-boson production data from the CDF and D0 experiments at Tevatron (107
data points) [59–63], and the LHC run-1 and run-2 measurements of Z-boson production by the
ATLAS, CMS, and LHCb collaborations (75 data points) [64–68]. Since these datasets are well-
known and have been well-studied in the past, we refer the reader to [5, 6, 8, 9] for a detailed
discussion on their properties. In addition to these, we have included the latest measurements done
at RHIC [28, 69] and the LHC [16, 29–31], and the W-boson production data from Tevatron [32, 33].
As we consider these data in the framework of TMD factorization for the first time, we find it
worthwhile to highlight the particularities of each set in the following lines.

The PHENIX data [69] were taken at
p
s = 200 GeV, which restricts the Q range (hQi = 7

GeV). It is the only modern DY measurement at low energy presently available, and has already
been studied within TMD factorization in refs. [6, 8, 9]. The Z/�-boson production measurement
at STAR [28] was made at moderately high energy (

p
s = 510 GeV) during the 2018-2020 runs and

the final results are currently in preparation for publication. Here we used the preliminary data.
In the present fit we include the recent y-di↵erential measurements of Z-boson production at

CMS [29] and LHCb [31], at
p
s = 13 TeV. These replace the corresponding integrated measure-

ments used in [8]. We also include the most precise (⇠ 0.1% uncertainty) measurement of the
Z-boson di↵erential cross-section by ATLAS [16]. Finally, we include the high-Q neutral-boson pro-
duction measurements by the CMS collaboration [30]. This dataset is unique, since it spans up to

– 12 –

PHENIX: DY data at 
 

STAR: Z/γ-boson production 
at  
(preliminary). 
CMS and LHCb: y-
differential Z-boson 
production at . 
ATLAS: high precision 
differential Z-boson cross-
section.  
CMS: high-Q neutral-boson 
production. 
Tevatron: W-boson 
production.

s = 200 GeV

s = 510 GeV

s = 13 TeV

New in!

627 data points

ART23
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Parameterization:  ,                        f f
NP(x, b) = 1/cosh[(λf

1(1 − x)+λf
2 x)b]

f = u, ū, d, d̄, sea

Reference PDFs: MSHT20 

In total, 13 parameters

ART23

Fitting procedure: construct simultaneous replicas of the data AND 
the PDFs. Then fit.
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Figure 4. The histogram of the �2 values for the full dataset. The black line marks the position of the

mean prediction, and the blue band shows the 68%CI of the �2 distribution.

in-between members of ⇤i. The procedure described above allows to propagate all correlations
correctly.

This work presents a comprehensive analysis of error propagation in TMD phenomenology,
which is the first of its kind. The proposed procedure is expected to reduce the dependence on
PDFs as input parameters. However, the approach comes at the cost of increased computational
complexity. In the present work, we use the MSHT20 PDF set [34], which we present as the main
result. To cross check we also made an independent run (with 300 replicas) with the NNPDF3.1
PDF set [36]. The results of this run are given in the appendix A.

5 Results

In this section we present the results of the fitting procedure, starting with the quality of the data
description, and finishing with the presentation of the extracted TMD distributions and CS kernel.

5.1 Quality of data description

We found that current setup perfectly describes the data. The central value fit results in �
2
/Npt =

0.93. For the mean prediction (i.e. hd�[⇤i]i), �2
/Npt = 0.957, with the 68%CI (0.950, 1.048). The

histogram of �2
/Npt is given in fig. 4. The complete list of the �2-values for all datasets is presented

in tab. 4.
In comparison to the SV19 fit [8] we observe an overall improvement in the �2, which is especially

significant for the description of the LHC data (�2
LHC/Npt = 1.26+0.76

�0.15 with Npt = 230), and the
low-energy DY data (�2

low/Npt = 0.50+0.09
�0.03 with Npt = 266). Similarly to SV19, we observe that

the low-energy DY data su↵er of deficits in the normalization. This is a known feature of TMD
factorization (see e.g. the extended discussions in refs.[8, 27]). Given that the data have very large
normalization uncertainties, these deficits do not significantly impact the value of �

2; therefore
it is not clear at the moment, if the problem arises from a shortcoming of the theory or of the
measurements. Let us also mention that the PHENIX measurement (hQi = 7 GeV) does not show
any problem with the normalization.

In fig. 5 we present the comparison of theory vs ATLAS 13 TeV measurement, which is the most
precise measurement at our disposal (with uncorrelated uncertainties < 0.5%). In this plot one can
see that TMD factorization works up to qT ' 0.2 Q (even if in this particular case only data up to
qT = 10 GeV were included into the fit). At larger qT , the theory prediction is systematically lower
than the measurement: this is a signal of the necessity for power corrections. The full collection of
data plots is given in the appendix B.

– 18 –
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 (0.957 for the mean prediction), 68%CI (0.950, 1.048) 

Higher data precision plays a key role here. 
Realistic uncertainty bands than in SV19. Main error from PDF. 
Future: per mille precision with Power Corr. and different fit

χ2/Npt = 0.93

ART23: RESULTS

11TMD Resum Match pQCD
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ART23: LATTICE COMPARISON
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Results in detail



DY+SIDIS: ART24
We did a fit in SV19.  No clear problem encountered in the fit.

We are providing a new version (work in progress).

Up to now  the fitting confirms SV19.

However our understanding of the result is getting different.

Both MAPS and SV19 and current fit show that there are unsolved 
theoretical problems which can be hidden by the fits: 

Power corrections should be put under control in SIDIS data.



TMDs   PDFskT

xP xP

WHAT IS THE RELATIONSHIP?

?

In principle TMDs are related to PDFs upon integration out the transverse 
momentum, but what about renormalization scale?
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Oscar del Rio, Alexei Prokudin, I.S., Alexey Vladimirov e-Print: 2402.01836 (2024)



DGLAP EQUATIONS                                                          COLLINS-SOPER EQUATIONS

<latexit sha1_base64="bkxCCIQwI5cso8oz6mQuUqFUPD4="></latexit>

d ln F̃ (x, bT , µ, ⇣)

d lnµ
= �F (µ)

<latexit sha1_base64="IleepGCdG5lhzY8fPgWOy+fJIVc="></latexit>

@ ln F̃ (x, bT , µ, ⇣)

@ ln
p
⇣

= K̃(bT , µ)

Integro-differential equations

<latexit sha1_base64="E6U95e92p2OCjhxcMGR7ATXG9Iw=">AAACH3icbZDLSsNAFIYnXmu9VV26GSxCBS2JlOpGKLoRuqnQVqEJYTKZ1KEzkzAzEUrom7jxVdy4UETc9W2ctFl4OzDw8f/ncOb8QcKo0rY9tRYWl5ZXVktr5fWNza3tys5uX8WpxKSHYxbLuwApwqggPU01I3eJJIgHjNwGo6vcv30gUtFYdPU4IR5HQ0EjipE2kl9pupFEOAuhqykLCWzXAr977PL0aJKLTEDDE3gBT9wh4hz57Vpu+pWqXbdnBf+CU0AVFNXxK59uGOOUE6ExQ0oNHDvRXoakppiRSdlNFUkQHqEhGRgUiBPlZbP7JvDQKCGMYmme0HCmfp/IEFdqzAPTyZG+V7+9XPzPG6Q6OvcyKpJUE4Hni6KUQR3DPCwYUkmwZmMDCEtq/grxPTKBaRNp2YTg/D75L/RP606z3rhpVFuXRRwlsA8OQA044Ay0wDXogB7A4BE8g1fwZj1ZL9a79TFvXbCKmT3wo6zpF0RAoT8=</latexit>

dK̃(bT , µ)

d lnµ
= ��K(µ)

Double scale differential equations

<latexit sha1_base64="lbp+hLEHf1fJ/W9augmqJcBw8h4="></latexit>

µ2 d

dµ2
fq(x, µ) =

X

f 0

Z 1

x

dy

y
Pq!q0(y)fq0

✓
x

y
, µ

◆

Non diagonal in flavor space Diagonal in flavor space

Collins-Soper kernel  is specific for TMDsK̃
= UV renormalization scaleμ = Collins-Soper parameterζ

Evolution
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TRANSVERSE MOMENTUM 
MOMENTS
➤ TMMs are weighted integrals with an upper cut-off

O. del Rio, A. Prokudin, I.S., A. Vladimirov e-Print: 2402.01836

 The upper cut-off becomes the scale at which the collinear functions are 
evaluated  
 TMMs obey DGLAP equations   
 We provide a definition for all moments

<latexit sha1_base64="Gv3T5h4VdkuQnqIYyFi9OT5j5z8="></latexit>

M[�]
⌫1...⌫n

(x, µ) ⌘
Z µ

d2~kT ~kT⌫1 ...~kT⌫nF
[�](x, kT )

<latexit sha1_base64="2zYZ20NaVJ5CDzM6s1643Tj8eQU="></latexit>

M⇤[�]
⌫1...⌫n

(x, µ) ⌘
Z µ

d2~kT ~kT⌫1 ...~kT⌫nF
[�](x, kT ;µ, µ

2)

for TMDs in the -prescription which has no scale dependenceζ

for TMDs in the general prescription

18

For 0-moment: M. Ebert, J. Michel, I. Stewart, Z. Sun,  JHEP 07 (2022) 129



TMDs in  space are parametrized as b

TMDS IN -SPACE AND  
OPERATION

b 𝒢

19

F̃[γ+](x, b) = f̃1(x, b) + iϵμν
T bμsTνMf̃⊥

1T(x, b),
F̃[γ+γ5](x, b) = λg̃1(x, b) + i(b ⋅ sT)Mg̃⊥

1T(x, b),

F̃[iσα+γ5](x, b) = sα
T h̃1(x, b) − iλbαMh̃⊥

1L(x, b)

+iϵαμ
T bμMh̃⊥

1 (x, b) +
M2

4
(gαμ

T b2 + 2bαbμ)sTμh̃⊥
1T(x, b)



Fourier transformation: angular integrations are trivial 

4

We call these integrals in Eqs. (6,7) Transverse Momentum Moments (TMMs). In what follows we show that (and

similarly for
⇤

M)

M
[�]

⌫1...⌫n
(x, µ) = M[�]

⌫1...⌫n
(x, µ) +O(µ�2), (8)

where we assume that the cut-o↵ scale µ is su�ciently large, to neglect O(µ�2) corrections. We prove that the TMMs
obtained with Eqs. (6,7) (after the appropriate subtractions) coincide with the collinear quantities from Eq. (4)

computed in some minimal subtraction scheme, that we call the TMD-scheme for M and TMD2-scheme for
⇤

M. It
means that TMM obeys the same evolution as the corresponding collinear matrix element, with the kernel that di↵ers
from the one in MS at order ↵

2
s
(i.e. at NLO). In some cases, it is possible to introduce a finite renormalization

constant to match the TMD-, TMD2-, and the MS-schemes. Note, that the cut-o↵ parameter µ in Eq. (6,7) is the
renormalization scale for the collinear distribution.

Importantly, the numerical values of (6) and (7) are not the same, despite both being equivalent to the same
collinear matrix element. TMMs (6) and (7) correspond to collinear matrix elements evaluated in di↵erent schemes,
which can be reduced to MS-scheme by di↵erent factors (see Section V). In other words,

M
[�]

⌫1...⌫n
(x, µ)/

⇤
M

[�]

⌫1...⌫n
(x, µ) = 1 +O(↵s). (9)

Detailed discussions on the relationship between the zeroth moment of unpolarized TMDs or Sivers TMD and the
corresponding collinear functions can be found in Refs. [42, 44, 48, 50, 61, 71]. Higher moments are more intricate as
they are associated with power corrections in the OPE.

III. PARAMETRIZATION OF TMDS IN POSITION AND MOMENTUM SPACE

The standard parameterization [53] of the TMD matrix element in Eq. (1) reads

eF [�
+
](x, b) = ef1(x, b) + i✏

µ⌫

T
bµsT⌫M

ef?

1T
(x, b),

eF [�
+
�
5
](x, b) = �eg1(x, b) + i(b · sT )Meg?

1T
(x, b), (10)

eF [i�
↵+

�
5
](x, b) = s

↵

T
eh1(x, b)� i�b

↵
Meh?

1L
(x, b)

+i✏
↵µ

T
bµM

eh?

1
(x, b) +

M
2b2

2

✓
g
↵µ

T

2
+

b
↵
b
µ

b2

◆
sTµ

eh?

1T
(x, b),

where ✏
µ⌫

T
= ✏

�+µ⌫ = ✏
30µ⌫ with ✏

12

T
= +1, gµ⌫

T
= g

µ⌫
� n

µ
n̄
⌫
� n̄

µ
n
⌫ , � and sT are the longitudinal and transverse

components of the spin-vector. The mass parameter M is a typical nonperturbative scale, often chosen to be the mass
of the hadron. It is worth noting that a TMD depends solely on the absolute value of the transverse coordinate b. In
momentum space, the parameterization is given by

F
[�

+
](x, kT ) = f1(x, kT )� ✏

µ⌫

T

kTµsT⌫

M
f
?

1T
(x, kT ),

F
[�

+
�
5
](x, kT ) = �g1(x, kT )�

(kT · sT )

M
g
?

1T
(x, kT ), (11)

F
[i�

↵+
�
5
](x, kT ) = s

↵

T
h1(x, kT ) +

�k
↵

T

M
h
?

1L
(x, kT )

�
✏
↵µ

T
kTµ

M
h
?

1
(x, kT )�

k2

T

M2

✓
g
↵µ

T

2
+

k
↵

T
k
µ

T

k2

T

◆
sTµh

?

1T
(x, kT ).

The TMDs in each space are related to each other by the Hankel transform

F (x, kT ) =
M

2n

n!

Z
1

0

dbb

2⇡

✓
b

kT

◆n

Jn(bkT ) eF (n)(x, b;µ, ⇣), (12)

which is obtained by the angular integration in the Fourier transform of Eq. (1), as b and kT are absolute values of
the transverse coordinate and momentum vectors. In Eq. (12) we introduce a superscript (n) and explicitly apply the
following relation [72] for TMDs in b-space

eF (n)(x, bT ;µ, ⇣) ⌘ n!

✓
�1

M2b
@b

◆n

eF (x, b;µ, ⇣) =
2⇡ n!

(bM)n

Z
1

0

dkT kT

✓
kT

M

◆n

Jn(bkT )F (x, kT ;µ, ⇣) . (13)

D. Boer, L. Gamberg, B. Musch, and A. Prokudin, JHEP 10, 021 (2011)
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Note that for real functions f , this Hankel transform is also real, and f̃
(n) possesses the same mass dimension for

all n. Therefore, the correspondence between the functions in Eq. (10) and Eq. (13) is

ef1(x, b) ⌘ ef (0)

1
(x, b), f

?

1T
(x, b) ⌘ ef?(1)

1T
(x, b),

eg1(x, b) ⌘ eg?(0)

1
(x, b), eg?

1T
(x, b) ⌘ eg?(1)

1T
(x, b), (14)

eh1(x, b) ⌘ eh?(0)

1
(x, b), eh?

1L
(x, b) ⌘ eh?(1)

1L
(x, b),

eh?

1
(x, b) ⌘ eh?(1)

1
(x, b), eh?

1T
(x, b) ⌘ eh?(2)

1T
(x, b).

Formally one has [72]

lim
b!0

ef (n)(x, b) =

Z
d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) ⌘ f
(n)(x), (15)

where f
(n)(x) is often referred to as the n-th moment of the TMD.

The superscripts (0), (1), (2) in Eqs. (14) help to keep track of the asymptotic behavior of the TMDs and they are
important for the discussion of TMMs in the following Sections. The large-kT asymptotic of the TMDs are power-like
and in kT -space one has

f(x, kT ) /
M

2m

(k2
T
)m+1

, (16)

accompanied by powers of logarithms ln(kT ), where f represents one of the TMDs from the right-hand side of Eq. (11),

and m is the corresponding superscript of ef (m)(x, b) from Eqs. (14).

IV. EVOLUTION OF TMDS AND ⇣-PRESCRIPTION

The treatment of evolution scales plays a central role in the derivations of relations between 3D and 1D struc-
tures. In this section, we recap the main elements of TMD evolution and the ⇣-prescription. The detailed definition
and derivations can be found in Refs. [52, 73]. For the reader’s convenience, we collect several useful formulas in
Appendix A.

All TMDs depend on two renormalization scales, µ, the UV evolution scale, and ⇣, the rapidity evolution scale. In
the position space, the dependence on (µ, ⇣) is governed by two evolution equations [4]

µ
2

d

dµ2

eF (x, b;µ, ⇣) =
�F (µ, ⇣)

2
eF (x, b;µ, ⇣), (17)

⇣
@

@⇣

eF (x, b;µ, ⇣) = �D(b, µ) eF (x, b;µ, ⇣), (18)

where eF represents any TMD in b-space from LHS of Eq. (10), and D is the Collins-Soper kernel 2. The TMD
anomalous dimension �F has the following form

�F (µ, ⇣) ⌘ �cusp(µ) ln

✓
µ
2

⇣

◆
� �V (µ). (19)

Here, �cusp is the cusp-anomalous dimension, and �V is the vector anomalous dimension. The coe�cients of the
corresponding perturbative series are denoted as:

�cusp(µ) =
1X

n=0

↵
n+1

s
(µ)�n, (20)

�V (µ) =
1X

n=1

↵
n

s
(µ)�n, (21)

2 D = �K̃/2, where K̃ is the Collins-Soper kernel in the notation of Ref [4]. It is a universal object for all quarks. For gluons, the
Collins-Soper kernel is di↵erent, and we do not explicitly consider gluons in this paper, hence we do not assign the flavor index to it.

The superscript  determines the large  asymptotic(m) kT

5

Note that for real functions f , this Hankel transform is also real, and f̃
(n) possesses the same mass dimension for

all n. Therefore, the correspondence between the functions in Eq. (10) and Eq. (13) is

ef1(x, b) ⌘ ef (0)

1
(x, b), f

?

1T
(x, b) ⌘ ef?(1)

1T
(x, b),

eg1(x, b) ⌘ eg?(0)

1
(x, b), eg?

1T
(x, b) ⌘ eg?(1)

1T
(x, b), (14)

eh1(x, b) ⌘ eh?(0)

1
(x, b), eh?

1L
(x, b) ⌘ eh?(1)

1L
(x, b),

eh?

1
(x, b) ⌘ eh?(1)

1
(x, b), eh?

1T
(x, b) ⌘ eh?(2)

1T
(x, b).

Formally one has [72]

lim
b!0

ef (n)(x, b) =

Z
d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) ⌘ f
(n)(x), (15)

where f
(n)(x) is often referred to as the n-th moment of the TMD.

The superscripts (0), (1), (2) in Eqs. (14) help to keep track of the asymptotic behavior of the TMDs and they are
important for the discussion of TMMs in the following Sections. The large-kT asymptotic of the TMDs are power-like
and in kT -space one has

f(x, kT ) /
M

2m

(k2
T
)m+1

, (16)

accompanied by powers of logarithms ln(kT ), where f represents one of the TMDs from the right-hand side of Eq. (11),

and m is the corresponding superscript of ef (m)(x, b) from Eqs. (14).

IV. EVOLUTION OF TMDS AND ⇣-PRESCRIPTION

The treatment of evolution scales plays a central role in the derivations of relations between 3D and 1D struc-
tures. In this section, we recap the main elements of TMD evolution and the ⇣-prescription. The detailed definition
and derivations can be found in Refs. [52, 73]. For the reader’s convenience, we collect several useful formulas in
Appendix A.

All TMDs depend on two renormalization scales, µ, the UV evolution scale, and ⇣, the rapidity evolution scale. In
the position space, the dependence on (µ, ⇣) is governed by two evolution equations [4]

µ
2

d

dµ2

eF (x, b;µ, ⇣) =
�F (µ, ⇣)

2
eF (x, b;µ, ⇣), (17)

⇣
@

@⇣

eF (x, b;µ, ⇣) = �D(b, µ) eF (x, b;µ, ⇣), (18)

where eF represents any TMD in b-space from LHS of Eq. (10), and D is the Collins-Soper kernel 2. The TMD
anomalous dimension �F has the following form

�F (µ, ⇣) ⌘ �cusp(µ) ln

✓
µ
2

⇣

◆
� �V (µ). (19)

Here, �cusp is the cusp-anomalous dimension, and �V is the vector anomalous dimension. The coe�cients of the
corresponding perturbative series are denoted as:

�cusp(µ) =
1X

n=0

↵
n+1

s
(µ)�n, (20)

�V (µ) =
1X

n=1

↵
n

s
(µ)�n, (21)

2 D = �K̃/2, where K̃ is the Collins-Soper kernel in the notation of Ref [4]. It is a universal object for all quarks. For gluons, the
Collins-Soper kernel is di↵erent, and we do not explicitly consider gluons in this paper, hence we do not assign the flavor index to it.
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➤ Operation  is defined as𝒢

➤ Its properties:  logarithmic divergence,  power 
divergence in 

n = m n = m + l
μ

➤ The logarithmic divergence for  is the UV divergence that 
corresponds to the divergence of the collinear functions

n = m

7

�cusp(µ0) ln

✓
µ
2
0

⇣0

◆
� �V (µ0) = 0. (30)

This point has the advantage of being uniquely defined and such that the values of ⇣µ are finite at all values of µ
(which is not guaranteed for any arbitrary equipotential line defined by Eq. (26)). The TMD defined on the line that
passes through the saddle point, Eqs. (29,30), is called the optimal TMD and is conventionally defined without explicit
scales, as discussed in Refs.[52, 73]. Another advantage of the optimal TMD on the equipotential line passing through
the saddle point is that the resulting TMD is inherently independent of the Collins-Soper kernel by construction, due
to Eq. (29).

Phenomenological studies that use ⇣-prescription proved to be very fruitful and include Refs. [14, 15, 49, 50,
52, 73, 78–80], along with the latest extraction of TMDs from Drell-Yan data performed at an approximate N4LL
accuracy [22].

V. THE ZEROTH TRANSVERSE MOMENTUM MOMENT

The zeroth TMM relates TMDs to the collinear (twist-two) parton distribution functions. In this Section, we
demonstrate that the zeroth TMM corresponds to the collinear PDF and exhibits the correct DGLAP evolution.
Specifically, we show that it can be precisely matched to the MS collinear PDF through a finite renormalization
constant.

The zeroth TMM is simply the momentum integral of the TMD given in Eq.(6). Upon substituting the parametriza-
tion for particular Dirac structures (10), we obtain

M
[�

+
](x, µ) =

Z
µ

d
2kTF

[�
+
](x, kT ) =

Z
µ

d
2kT f1(x, kT ),

M
[�

+
�5](x, µ) =

Z
µ

d
2kTF

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kT g1(x, kT ), (31)

M
[i�

↵+
�
5
](x, µ) =

Z
µ

d
2kTF

[i�
↵+

�
5
](x, kT ) = s

↵

T

Z
µ

d
2kTh1(x, kT )

�

Z
µ

d
2kT

k2

T

M2

✓
g
↵µ

T

2
+

k
↵

T
k
µ

T

k2

T

◆
sTµh

?

1T
(x, kT ),

The last term contributes as ⇠ µ
�2, because the pretzelocity TMD, h?

1T
, behaves as k

�6

T
at large kT . Since we are

considering the large-µ regime, we will neglect this term.
To simplify the notations, we introduce operation G, see also Ref. [42],

Gn,m[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) . (32)

In Eq. (32) the first index n can be any integer, while the second index m is the index of the TMD f̃ from Eqs. (14) in
b-space, that corresponds to the TMD f . Notice that without the upper cut-o↵, one recovers the usual n-th moment
of the TMD, as given by Eq. (15). With this notation and using Eq. (16) we obtain the following properties:

Gm,m[f ](x, µ) / log(µ) ,

Gm+l,m[f ](x, µ) / µ
2l for m+ l � 0 . (33)

That is, for any TMD in b-space of index m, the operation Gm,m exhibits logarithmic divergence, the operation Gm+l,m

has power like divergence of order l if l > 0, and Gm+l,m is convergent if l < 0. In what follows for the zeroth moment,
where indices are (0, 0), the index n is not a free parameter but is defined by the index m of the TMD. For simplicity,
we use a single subscript in the case where n = m, so that Gn,n ⌘ Gn. Hence, we have

Gn[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) =
1

n!

Z
1

0

db µ

✓
µb

2

◆n

Jn+1(µb) ef (n)(x, b), (34)

where Jn+1 is the Bessel function of the first kind. In this notation, Eqs. (31) turns into

M
[�

+
](x, µ) = G0[f1](x, µ), (35)
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�cusp(µ0) ln

✓
µ
2
0

⇣0

◆
� �V (µ0) = 0. (30)

This point has the advantage of being uniquely defined and such that the values of ⇣µ are finite at all values of µ
(which is not guaranteed for any arbitrary equipotential line defined by Eq. (26)). The TMD defined on the line that
passes through the saddle point, Eqs. (29,30), is called the optimal TMD and is conventionally defined without explicit
scales, as discussed in Refs.[52, 73]. Another advantage of the optimal TMD on the equipotential line passing through
the saddle point is that the resulting TMD is inherently independent of the Collins-Soper kernel by construction, due
to Eq. (29).

Phenomenological studies that use ⇣-prescription proved to be very fruitful and include Refs. [14, 15, 49, 50,
52, 73, 78–80], along with the latest extraction of TMDs from Drell-Yan data performed at an approximate N4LL
accuracy [22].

V. THE ZEROTH TRANSVERSE MOMENTUM MOMENT

The zeroth TMM relates TMDs to the collinear (twist-two) parton distribution functions. In this Section, we
demonstrate that the zeroth TMM corresponds to the collinear PDF and exhibits the correct DGLAP evolution.
Specifically, we show that it can be precisely matched to the MS collinear PDF through a finite renormalization
constant.

The zeroth TMM is simply the momentum integral of the TMD given in Eq.(6). Upon substituting the parametriza-
tion for particular Dirac structures (10), we obtain

M
[�

+
](x, µ) =

Z
µ

d
2kTF

[�
+
](x, kT ) =

Z
µ

d
2kT f1(x, kT ),

M
[�

+
�5](x, µ) =

Z
µ

d
2kTF

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kT g1(x, kT ), (31)

M
[i�

↵+
�
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](x, µ) =

Z
µ

d
2kTF

[i�
↵+

�
5
](x, kT ) = s

↵

T

Z
µ

d
2kTh1(x, kT )

�

Z
µ

d
2kT

k2

T

M2

✓
g
↵µ

T

2
+

k
↵

T
k
µ

T

k2

T

◆
sTµh

?

1T
(x, kT ),

The last term contributes as ⇠ µ
�2, because the pretzelocity TMD, h?

1T
, behaves as k

�6

T
at large kT . Since we are

considering the large-µ regime, we will neglect this term.
To simplify the notations, we introduce operation G, see also Ref. [42],

Gn,m[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) . (32)

In Eq. (32) the first index n can be any integer, while the second index m is the index of the TMD f̃ from Eqs. (14) in
b-space, that corresponds to the TMD f . Notice that without the upper cut-o↵, one recovers the usual n-th moment
of the TMD, as given by Eq. (15). With this notation and using Eq. (16) we obtain the following properties:

Gm,m[f ](x, µ) / log(µ) ,

Gm+l,m[f ](x, µ) / µ
2l for m+ l � 0 . (33)

That is, for any TMD in b-space of index m, the operation Gm,m exhibits logarithmic divergence, the operation Gm+l,m

has power like divergence of order l if l > 0, and Gm+l,m is convergent if l < 0. In what follows for the zeroth moment,
where indices are (0, 0), the index n is not a free parameter but is defined by the index m of the TMD. For simplicity,
we use a single subscript in the case where n = m, so that Gn,n ⌘ Gn. Hence, we have

Gn[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) =
1

n!

Z
1

0

db µ

✓
µb

2

◆n

Jn+1(µb) ef (n)(x, b), (34)

where Jn+1 is the Bessel function of the first kind. In this notation, Eqs. (31) turns into

M
[�

+
](x, µ) = G0[f1](x, µ), (35)

➤ Without cut-off it corresponds to the conventional  moment of 
TMD,  is the corresponding superscript of the TMD 

nth

m f̃

TMDS IN -SPACE AND  
OPERATION

b 𝒢

21



 TMM,
 TMM, 

AND  TMM

0th

1st

2nd



➤ The  TMM is0th

7

�cusp(µ0) ln
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� �V (µ0) = 0. (30)

This point has the advantage of being uniquely defined and such that the values of ⇣µ are finite at all values of µ
(which is not guaranteed for any arbitrary equipotential line defined by Eq. (26)). The TMD defined on the line that
passes through the saddle point, Eqs. (29,30), is called the optimal TMD and is conventionally defined without explicit
scales, as discussed in Refs.[52, 73]. Another advantage of the optimal TMD on the equipotential line passing through
the saddle point is that the resulting TMD is inherently independent of the Collins-Soper kernel by construction, due
to Eq. (29).

Phenomenological studies that use ⇣-prescription proved to be very fruitful and include Refs. [14, 15, 49, 50,
52, 73, 78–80], along with the latest extraction of TMDs from Drell-Yan data performed at an approximate N4LL
accuracy [22].

V. THE ZEROTH TRANSVERSE MOMENTUM MOMENT

The zeroth TMM relates TMDs to the collinear (twist-two) parton distribution functions. In this Section, we
demonstrate that the zeroth TMM corresponds to the collinear PDF and exhibits the correct DGLAP evolution.
Specifically, we show that it can be precisely matched to the MS collinear PDF through a finite renormalization
constant.

The zeroth TMM is simply the momentum integral of the TMD given in Eq.(6). Upon substituting the parametriza-
tion for particular Dirac structures (10), we obtain

M
[�

+
](x, µ) =

Z
µ

d
2kTF

[�
+
](x, kT ) =

Z
µ

d
2kT f1(x, kT ),

M
[�

+
�5](x, µ) =

Z
µ

d
2kTF

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kT g1(x, kT ), (31)
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↵
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Z
µ

d
2kTh1(x, kT )
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Z
µ

d
2kT

k2

T

M2

✓
g
↵µ

T

2
+

k
↵

T
k
µ

T

k2

T
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sTµh

?

1T
(x, kT ),

The last term contributes as ⇠ µ
�2, because the pretzelocity TMD, h?

1T
, behaves as k

�6

T
at large kT . Since we are

considering the large-µ regime, we will neglect this term.
To simplify the notations, we introduce operation G, see also Ref. [42],

Gn,m[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) . (32)

In Eq. (32) the first index n can be any integer, while the second index m is the index of the TMD f̃ from Eqs. (14) in
b-space, that corresponds to the TMD f . Notice that without the upper cut-o↵, one recovers the usual n-th moment
of the TMD, as given by Eq. (15). With this notation and using Eq. (16) we obtain the following properties:

Gm,m[f ](x, µ) / log(µ) ,

Gm+l,m[f ](x, µ) / µ
2l for m+ l � 0 . (33)

That is, for any TMD in b-space of index m, the operation Gm,m exhibits logarithmic divergence, the operation Gm+l,m

has power like divergence of order l if l > 0, and Gm+l,m is convergent if l < 0. In what follows for the zeroth moment,
where indices are (0, 0), the index n is not a free parameter but is defined by the index m of the TMD. For simplicity,
we use a single subscript in the case where n = m, so that Gn,n ⌘ Gn. Hence, we have

Gn[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) =
1

n!

Z
1

0

db µ

✓
µb

2

◆n

Jn+1(µb) ef (n)(x, b), (34)

where Jn+1 is the Bessel function of the first kind. In this notation, Eqs. (31) turns into

M
[�

+
](x, µ) = G0[f1](x, µ), (35)

 so we drop it∝ μ−2
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This point has the advantage of being uniquely defined and such that the values of ⇣µ are finite at all values of µ
(which is not guaranteed for any arbitrary equipotential line defined by Eq. (26)). The TMD defined on the line that
passes through the saddle point, Eqs. (29,30), is called the optimal TMD and is conventionally defined without explicit
scales, as discussed in Refs.[52, 73]. Another advantage of the optimal TMD on the equipotential line passing through
the saddle point is that the resulting TMD is inherently independent of the Collins-Soper kernel by construction, due
to Eq. (29).

Phenomenological studies that use ⇣-prescription proved to be very fruitful and include Refs. [14, 15, 49, 50,
52, 73, 78–80], along with the latest extraction of TMDs from Drell-Yan data performed at an approximate N4LL
accuracy [22].

V. THE ZEROTH TRANSVERSE MOMENTUM MOMENT

The zeroth TMM relates TMDs to the collinear (twist-two) parton distribution functions. In this Section, we
demonstrate that the zeroth TMM corresponds to the collinear PDF and exhibits the correct DGLAP evolution.
Specifically, we show that it can be precisely matched to the MS collinear PDF through a finite renormalization
constant.

The zeroth TMM is simply the momentum integral of the TMD given in Eq.(6). Upon substituting the parametriza-
tion for particular Dirac structures (10), we obtain

M
[�

+
](x, µ) =

Z
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d
2kTF
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+
](x, kT ) =

Z
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d
2kT f1(x, kT ),
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M
[i�

↵+
�
5
](x, µ) =

Z
µ

d
2kTF

[i�
↵+

�
5
](x, kT ) = s

↵

T

Z
µ

d
2kTh1(x, kT )

�

Z
µ

d
2kT

k2

T

M2

✓
g
↵µ

T

2
+

k
↵

T
k
µ

T

k2

T

◆
sTµh

?

1T
(x, kT ),

The last term contributes as ⇠ µ
�2, because the pretzelocity TMD, h?

1T
, behaves as k

�6

T
at large kT . Since we are

considering the large-µ regime, we will neglect this term.
To simplify the notations, we introduce operation G, see also Ref. [42],

Gn,m[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) . (32)

In Eq. (32) the first index n can be any integer, while the second index m is the index of the TMD f̃ from Eqs. (14) in
b-space, that corresponds to the TMD f . Notice that without the upper cut-o↵, one recovers the usual n-th moment
of the TMD, as given by Eq. (15). With this notation and using Eq. (16) we obtain the following properties:

Gm,m[f ](x, µ) / log(µ) ,

Gm+l,m[f ](x, µ) / µ
2l for m+ l � 0 . (33)

That is, for any TMD in b-space of index m, the operation Gm,m exhibits logarithmic divergence, the operation Gm+l,m

has power like divergence of order l if l > 0, and Gm+l,m is convergent if l < 0. In what follows for the zeroth moment,
where indices are (0, 0), the index n is not a free parameter but is defined by the index m of the TMD. For simplicity,
we use a single subscript in the case where n = m, so that Gn,n ⌘ Gn. Hence, we have

Gn[f ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n

f(x, kT ) =
1

n!

Z
1

0

db µ

✓
µb

2

◆n

Jn+1(µb) ef (n)(x, b), (34)

where Jn+1 is the Bessel function of the first kind. In this notation, Eqs. (31) turns into

M
[�

+
](x, µ) = G0[f1](x, µ), (35)
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M
[�

+
�
5
](x, µ) = sLG0[g1](x, µ), (36)

M
[i�

↵+
�
5
](x, µ) = s

↵

T
G0[h1](x, µ), (37)

where sL and sT are the longitudinal and transverse components of the proton’s spin. TMDs f1, g1, and h1 are known
as the unpolarized, helicity, and transversity TMDs, respectively.

At large values of kT the TMDs f1, g1, and h1 behave as k
�2

T
, see Eq. (16), (potentially multiplied by powers

of ln(kT )) [81]. Therefore, the integrals G0 diverge logarithmically as µ becomes large. This is, in essence, the UV
divergence associated with the DGLAP evolution of the corresponding collinear distributions. Therefore, the zeroth
TMMs, Eqs. (35-37), exhibit logarithmic divergences similar to those in the collinear PDFs:

G0[F ](x, µ) = f
(TMD)(x, µ) +O(µ�2), (38)

where F represents the TMDs f1, g1, and h1, and f
(TMD) is related to unpolarized (q(x)), helicity (�q(x)), and

transversity (�q(x)) collinear PDFs, respectively:

G0[f1](x, µ) = q
(TMD)(x, µ) +O(µ�2),

G0[g1](x, µ) = �q
(TMD)(x, µ) +O(µ�2), (39)

G0[h1](x, µ) = �q
(TMD)(x, µ) +O(µ�2).

These relations were considered in Ref. [61] at NLL and then studied in detail in Ref. [42]. The label “(TMD)”
is used to distinguish the functions resulting from the operation G0 from the collinear functions themselves. We
will demonstrate that the resulting functions f (TMD) obey the same DGLAP evolution equations as collinear PDFs.
Therefore, the label “(TMD)” indicates that the collinear PDF is evaluated in a particular TMD-scheme, which is
a minimal subtraction scheme, but it does not coincide with MS-scheme [82, 83]. The transformation between the

TMD-scheme and the conventional MS-scheme can be performed by a finite renormalization constant Z
MS/TMD,

which we derive below. The schemes di↵er also for TMMs evaluated with the optimal TMDs, Eq. (6), or with TMDs
at general scales, Eq. (7). We consider these cases one by one, starting with the ⇣-prescription.

A. Optimal TMDs

To derive Eq. (38) and verify its properties, we exploit the correspondence between the large-µ asymptotic behavior
of Hankel integrals and the small-b asymptotic behavior of the integrand [84]. The small-b asymptotic of a TMD can
be computed using the operator product expansion (OPE). For TMDs f1, g1, and h1, the OPE takes the form

eFf (x, b) =
X

f 0

Z
1

x

dy

y

eCf f 0(y, µOPE)ff 0

✓
x

y
, µOPE

◆
+O(b2) ⌘ eC ⌦ f +O(b2), (40)

where eC is the coe�cient function that depends on b via LO = ln(µ2

OPE
b2/4e�2�E ). Here we explicitly indicate the

flavor labels f of the TMD and introduce the convolution notation “⌦” that implies Mellin convolution and summation
over flavors f 0 (quarks, anti-quarks, and gluons)

eC ⌦ f ⌘

X

f 0

Z
1

x

dy

y

eCf f 0 (y, µ) ff 0

✓
x

y
, µ

◆
=

X

f 0

Z
1

x

dy

y

eCf f 0

✓
x

y
, µ

◆
ff 0 (y, µ) . (41)

Notice that this convolution is not commutative (for instance see terms such as C1 ⌦P1 ⌦P1 in Eq. (42)) because the
kernels are not symmetric in flavor space. The expression in Eq. (40) is independent of µOPE as the dependence on
this scale cancels between PDF evolution and the coe�cient function, rendering the LHS of Eq. (40) scale invariant.
For the optimal TMD, the perturbative coe�cient function takes the following form:

eC = 1+ ↵s (�P1LO + C1) + ↵
2

s


P1 ⌦ P1 � �0P1

2
L2

O
� (P2 + C1 ⌦ P1 � �0C1)LO + C2

�

+↵
3

s

h
�

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

� L3

O

6
(42)

+
�
P1 ⌦ P2 + P2 ⌦ P1 + C1 ⌦ P1 ⌦ P1 � 3�0C1 ⌦ P1 � 2�0P2 � �1P1 + 2�2

0
C1

� L2

O

2

In practice we obtain PDF in a certain (TMD) scheme
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T
G0[h1](x, µ), (37)

where sL and sT are the longitudinal and transverse components of the proton’s spin. TMDs f1, g1, and h1 are known
as the unpolarized, helicity, and transversity TMDs, respectively.

At large values of kT the TMDs f1, g1, and h1 behave as k
�2

T
, see Eq. (16), (potentially multiplied by powers

of ln(kT )) [81]. Therefore, the integrals G0 diverge logarithmically as µ becomes large. This is, in essence, the UV
divergence associated with the DGLAP evolution of the corresponding collinear distributions. Therefore, the zeroth
TMMs, Eqs. (35-37), exhibit logarithmic divergences similar to those in the collinear PDFs:

G0[F ](x, µ) = f
(TMD)(x, µ) +O(µ�2), (38)

where F represents the TMDs f1, g1, and h1, and f
(TMD) is related to unpolarized (q(x)), helicity (�q(x)), and

transversity (�q(x)) collinear PDFs, respectively:

G0[f1](x, µ) = q
(TMD)(x, µ) +O(µ�2),

G0[g1](x, µ) = �q
(TMD)(x, µ) +O(µ�2), (39)

G0[h1](x, µ) = �q
(TMD)(x, µ) +O(µ�2).

These relations were considered in Ref. [61] at NLL and then studied in detail in Ref. [42]. The label “(TMD)”
is used to distinguish the functions resulting from the operation G0 from the collinear functions themselves. We
will demonstrate that the resulting functions f (TMD) obey the same DGLAP evolution equations as collinear PDFs.
Therefore, the label “(TMD)” indicates that the collinear PDF is evaluated in a particular TMD-scheme, which is
a minimal subtraction scheme, but it does not coincide with MS-scheme [82, 83]. The transformation between the

TMD-scheme and the conventional MS-scheme can be performed by a finite renormalization constant Z
MS/TMD,

which we derive below. The schemes di↵er also for TMMs evaluated with the optimal TMDs, Eq. (6), or with TMDs
at general scales, Eq. (7). We consider these cases one by one, starting with the ⇣-prescription.

A. Optimal TMDs

To derive Eq. (38) and verify its properties, we exploit the correspondence between the large-µ asymptotic behavior
of Hankel integrals and the small-b asymptotic behavior of the integrand [84]. The small-b asymptotic of a TMD can
be computed using the operator product expansion (OPE). For TMDs f1, g1, and h1, the OPE takes the form

eFf (x, b) =
X

f 0

Z
1

x

dy

y

eCf f 0(y, µOPE)ff 0

✓
x

y
, µOPE

◆
+O(b2) ⌘ eC ⌦ f +O(b2), (40)

where eC is the coe�cient function that depends on b via LO = ln(µ2

OPE
b2/4e�2�E ). Here we explicitly indicate the

flavor labels f of the TMD and introduce the convolution notation “⌦” that implies Mellin convolution and summation
over flavors f 0 (quarks, anti-quarks, and gluons)

eC ⌦ f ⌘

X

f 0

Z
1

x

dy

y

eCf f 0 (y, µ) ff 0

✓
x

y
, µ

◆
=

X

f 0

Z
1

x

dy

y

eCf f 0

✓
x

y
, µ

◆
ff 0 (y, µ) . (41)

Notice that this convolution is not commutative (for instance see terms such as C1 ⌦P1 ⌦P1 in Eq. (42)) because the
kernels are not symmetric in flavor space. The expression in Eq. (40) is independent of µOPE as the dependence on
this scale cancels between PDF evolution and the coe�cient function, rendering the LHS of Eq. (40) scale invariant.
For the optimal TMD, the perturbative coe�cient function takes the following form:

eC = 1+ ↵s (�P1LO + C1) + ↵
2

s


P1 ⌦ P1 � �0P1

2
L2

O
� (P2 + C1 ⌦ P1 � �0C1)LO + C2

�

+↵
3

s

h
�

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

� L3

O

6
(42)

+
�
P1 ⌦ P2 + P2 ⌦ P1 + C1 ⌦ P1 ⌦ P1 � 3�0C1 ⌦ P1 � 2�0P2 � �1P1 + 2�2

0
C1

� L2

O

2
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Using Wilson coefficients of small-  and large-  asymptotic expansion of Hankel 
transform one obtains 

b μ

9

� (P3 + C1 ⌦ P2 + C2 ⌦ P1 � 2�0C2 � �1C1)LO + C3

i
+O(↵4

s
),

where the leading term 1 ⌘ �ff 0�(1 � y) represents the unity convolution, Cn are the finite parts of the coe�cient
function free from any logarithmic dependence, and Pn stand for the perturbative coe�cients of the DGLAP kernel,
as given by

µ
2

d

dµ2
f(x, µ) =

 
1X

n=1

↵
n

s
(µ)Pn(x)

!
⌦ f(x, µ) = P ⌦ f(x, µ). (43)

Furthermore, �n represent the coe�cients of the QCD beta-function, defined by

µ
2

d

dµ2
↵s(µ) = �

1X

n=0

�n↵
n+2

s
(µ). (44)

Expressions for the coe�cient functions for the unpolarized TMD can be found in Refs. [30, 31, 63, 67] up to
↵
3
s
-order, for helicity TMD in Ref. [61, 64] up to ↵

1
s
, and for transversity TMD in Ref. [65] up to ↵

2
s
. The expressions

presented in these references apply to general scales (µ, ⇣), and in Appendix A 2 we provide the rules to render those
into ⇣-prescription. It is essential to emphasize that all computations are in the MS-scheme, and consequently, PDFs
in Eq. (40) are defined in the MS-scheme.

The relationship between the small-b and large-µ asymptotic expansions with logarithmic terms is explored in
detail in Refs. [85, 86]. Generally, power-suppressed terms in b contribute to power-suppressed terms in µ, and
the logarithmic singularities at b ! 0 turn into logarithmic singularities at µ ! 1. For the leading power term,
the asymptotic behavior for b ! 0 and µ ! 1 are connected by simple replacement rules LO ! �`̀̀, L2

O
! `̀̀

2,
L3

O
! �`̀̀

3
� 4⇣3, etc., see Ref. [85] (here `̀̀ = ln(µ2

/µ
2

OPE
)). The OPE in Eq. (40) is independent of µOPE, and

therefore, it is conventional to set µOPE = µ (and hence `̀̀ = 0). Thus, the asymptotic form of Eq. (38) reads

G0[F ](x, µ) =

⇢
1+ ↵sC1 + ↵

2

s
C2 (45)

+↵
3

s

h2⇣3
3

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

�
+ C3

i
+O(↵4

s
)

�
⌦ f(x, µ) +O(µ�2),

where ↵s is evaluated at µ. Upon di↵erentiating this expression, we obtain:

µ
2

d

dµ2
f
(TMD)(x, µ) = P

0
⌦ f

(TMD)(x, µ). (46)

Here, the evolution kernel P 0 deviates from the MS DGLAP kernel P (defined in Eq. (43)) starting at order ↵2
s

P
0
� P = �↵

2

s
�0C1 � ↵

3

s
(2�0C2 � �0C1 ⌦ C1 + �1C1) +O(↵4

s
). (47)

Thus, we have established that the function f
(TMD) is a collinear PDF that obeys the DGLAP equation but is

computed in a scheme di↵erent from MS. As we stated in the previous subsection, we refer to this scheme as the
TMD-scheme. The same result holds for helicity and transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coe�cient functions C.

The transition from the TMD-scheme to the MS-scheme is accomplished through multiplication by a finite renor-
malization matrix Z

f
(MS)

f
(x, µ) =

X

f 0

Z
1

x

dy

y
Z

MS/TMD

f f 0 (y, µ)f (TMD)

f 0

✓
x

y
, µ

◆
, (48)

where the PDF on the left-hand side is the collinear PDF in MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS/TMD can be obtained by eliminating terms in Eq. (47). The
result reads

Z
MS/TMD = 1� ↵sC1 � ↵

2

s
(C2 � C1 ⌦ C1) (49)

�↵
3

s


C3 + C1 ⌦ C1 ⌦ C1 � C1 ⌦ C2 � C2 ⌦ C1 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
).

R. Wong, Computers & Mathematics with Applications 3, 271 (1977). 
R. F. MacKinnon, Mathematics of Computation 26, 515 (1972).



All scales in theTMD are set to  and we have a DGLAP equationμ

9

� (P3 + C1 ⌦ P2 + C2 ⌦ P1 � 2�0C2 � �1C1)LO + C3

i
+O(↵4

s
),

where the leading term 1 ⌘ �ff 0�(1 � y) represents the unity convolution, Cn are the finite parts of the coe�cient
function free from any logarithmic dependence, and Pn stand for the perturbative coe�cients of the DGLAP kernel,
as given by

µ
2

d

dµ2
f(x, µ) =

 
1X

n=1

↵
n

s
(µ)Pn(x)

!
⌦ f(x, µ) = P ⌦ f(x, µ). (43)

Furthermore, �n represent the coe�cients of the QCD beta-function, defined by

µ
2

d

dµ2
↵s(µ) = �

1X

n=0

�n↵
n+2

s
(µ). (44)

Expressions for the coe�cient functions for the unpolarized TMD can be found in Refs. [30, 31, 63, 67] up to
↵
3
s
-order, for helicity TMD in Ref. [61, 64] up to ↵

1
s
, and for transversity TMD in Ref. [65] up to ↵

2
s
. The expressions

presented in these references apply to general scales (µ, ⇣), and in Appendix A 2 we provide the rules to render those
into ⇣-prescription. It is essential to emphasize that all computations are in the MS-scheme, and consequently, PDFs
in Eq. (40) are defined in the MS-scheme.

The relationship between the small-b and large-µ asymptotic expansions with logarithmic terms is explored in
detail in Refs. [85, 86]. Generally, power-suppressed terms in b contribute to power-suppressed terms in µ, and
the logarithmic singularities at b ! 0 turn into logarithmic singularities at µ ! 1. For the leading power term,
the asymptotic behavior for b ! 0 and µ ! 1 are connected by simple replacement rules LO ! �`̀̀, L2

O
! `̀̀

2,
L3

O
! �`̀̀

3
� 4⇣3, etc., see Ref. [85] (here `̀̀ = ln(µ2

/µ
2

OPE
)). The OPE in Eq. (40) is independent of µOPE, and

therefore, it is conventional to set µOPE = µ (and hence `̀̀ = 0). Thus, the asymptotic form of Eq. (38) reads

G0[F ](x, µ) =

⇢
1+ ↵sC1 + ↵

2

s
C2 (45)

+↵
3

s

h2⇣3
3

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

�
+ C3

i
+O(↵4

s
)

�
⌦ f(x, µ) +O(µ�2),

where ↵s is evaluated at µ. Upon di↵erentiating this expression, we obtain:

µ
2

d

dµ2
f
(TMD)(x, µ) = P

0
⌦ f

(TMD)(x, µ). (46)

Here, the evolution kernel P 0 deviates from the MS DGLAP kernel P (defined in Eq. (43)) starting at order ↵2
s

P
0
� P = �↵

2

s
�0C1 � ↵

3

s
(2�0C2 � �0C1 ⌦ C1 + �1C1) +O(↵4

s
). (47)

Thus, we have established that the function f
(TMD) is a collinear PDF that obeys the DGLAP equation but is

computed in a scheme di↵erent from MS. As we stated in the previous subsection, we refer to this scheme as the
TMD-scheme. The same result holds for helicity and transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coe�cient functions C.

The transition from the TMD-scheme to the MS-scheme is accomplished through multiplication by a finite renor-
malization matrix Z

f
(MS)

f
(x, µ) =

X

f 0

Z
1

x

dy

y
Z

MS/TMD

f f 0 (y, µ)f (TMD)

f 0

✓
x

y
, µ

◆
, (48)

where the PDF on the left-hand side is the collinear PDF in MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS/TMD can be obtained by eliminating terms in Eq. (47). The
result reads

Z
MS/TMD = 1� ↵sC1 � ↵

2

s
(C2 � C1 ⌦ C1) (49)

�↵
3

s


C3 + C1 ⌦ C1 ⌦ C1 � C1 ⌦ C2 � C2 ⌦ C1 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
).

9

� (P3 + C1 ⌦ P2 + C2 ⌦ P1 � 2�0C2 � �1C1)LO + C3

i
+O(↵4

s
),

where the leading term 1 ⌘ �ff 0�(1 � y) represents the unity convolution, Cn are the finite parts of the coe�cient
function free from any logarithmic dependence, and Pn stand for the perturbative coe�cients of the DGLAP kernel,
as given by

µ
2

d

dµ2
f(x, µ) =

 
1X

n=1

↵
n

s
(µ)Pn(x)

!
⌦ f(x, µ) = P ⌦ f(x, µ). (43)

Furthermore, �n represent the coe�cients of the QCD beta-function, defined by

µ
2

d

dµ2
↵s(µ) = �

1X

n=0

�n↵
n+2

s
(µ). (44)

Expressions for the coe�cient functions for the unpolarized TMD can be found in Refs. [30, 31, 63, 67] up to
↵
3
s
-order, for helicity TMD in Ref. [61, 64] up to ↵

1
s
, and for transversity TMD in Ref. [65] up to ↵

2
s
. The expressions

presented in these references apply to general scales (µ, ⇣), and in Appendix A 2 we provide the rules to render those
into ⇣-prescription. It is essential to emphasize that all computations are in the MS-scheme, and consequently, PDFs
in Eq. (40) are defined in the MS-scheme.

The relationship between the small-b and large-µ asymptotic expansions with logarithmic terms is explored in
detail in Refs. [85, 86]. Generally, power-suppressed terms in b contribute to power-suppressed terms in µ, and
the logarithmic singularities at b ! 0 turn into logarithmic singularities at µ ! 1. For the leading power term,
the asymptotic behavior for b ! 0 and µ ! 1 are connected by simple replacement rules LO ! �`̀̀, L2

O
! `̀̀

2,
L3

O
! �`̀̀

3
� 4⇣3, etc., see Ref. [85] (here `̀̀ = ln(µ2

/µ
2

OPE
)). The OPE in Eq. (40) is independent of µOPE, and

therefore, it is conventional to set µOPE = µ (and hence `̀̀ = 0). Thus, the asymptotic form of Eq. (38) reads

G0[F ](x, µ) =

⇢
1+ ↵sC1 + ↵

2

s
C2 (45)

+↵
3

s

h2⇣3
3

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

�
+ C3

i
+O(↵4

s
)

�
⌦ f(x, µ) +O(µ�2),

where ↵s is evaluated at µ. Upon di↵erentiating this expression, we obtain:

µ
2

d

dµ2
f
(TMD)(x, µ) = P

0
⌦ f

(TMD)(x, µ). (46)

Here, the evolution kernel P 0 deviates from the MS DGLAP kernel P (defined in Eq. (43)) starting at order ↵2
s

P
0
� P = �↵

2

s
�0C1 � ↵

3

s
(2�0C2 � �0C1 ⌦ C1 + �1C1) +O(↵4

s
). (47)

Thus, we have established that the function f
(TMD) is a collinear PDF that obeys the DGLAP equation but is

computed in a scheme di↵erent from MS. As we stated in the previous subsection, we refer to this scheme as the
TMD-scheme. The same result holds for helicity and transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coe�cient functions C.

The transition from the TMD-scheme to the MS-scheme is accomplished through multiplication by a finite renor-
malization matrix Z

f
(MS)

f
(x, µ) =

X

f 0

Z
1

x

dy

y
Z

MS/TMD

f f 0 (y, µ)f (TMD)

f 0

✓
x

y
, µ

◆
, (48)

where the PDF on the left-hand side is the collinear PDF in MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS/TMD can be obtained by eliminating terms in Eq. (47). The
result reads

Z
MS/TMD = 1� ↵sC1 � ↵

2

s
(C2 � C1 ⌦ C1) (49)

�↵
3

s


C3 + C1 ⌦ C1 ⌦ C1 � C1 ⌦ C2 � C2 ⌦ C1 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
).

Therefore it is the same as PDFs but computed in a different scheme.  
The difference in splitting functions is of order  and it is calculableα2

s
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We call this scheme TMD-scheme and the coefficient to transform to  
scheme reads

MS

9

� (P3 + C1 ⌦ P2 + C2 ⌦ P1 � 2�0C2 � �1C1)LO + C3

i
+O(↵4

s
),

where the leading term 1 ⌘ �ff 0�(1 � y) represents the unity convolution, Cn are the finite parts of the coe�cient
function free from any logarithmic dependence, and Pn stand for the perturbative coe�cients of the DGLAP kernel,
as given by

µ
2

d

dµ2
f(x, µ) =

 
1X

n=1

↵
n

s
(µ)Pn(x)

!
⌦ f(x, µ) = P ⌦ f(x, µ). (43)

Furthermore, �n represent the coe�cients of the QCD beta-function, defined by

µ
2

d

dµ2
↵s(µ) = �

1X

n=0

�n↵
n+2

s
(µ). (44)

Expressions for the coe�cient functions for the unpolarized TMD can be found in Refs. [30, 31, 63, 67] up to
↵
3
s
-order, for helicity TMD in Ref. [61, 64] up to ↵

1
s
, and for transversity TMD in Ref. [65] up to ↵

2
s
. The expressions

presented in these references apply to general scales (µ, ⇣), and in Appendix A 2 we provide the rules to render those
into ⇣-prescription. It is essential to emphasize that all computations are in the MS-scheme, and consequently, PDFs
in Eq. (40) are defined in the MS-scheme.

The relationship between the small-b and large-µ asymptotic expansions with logarithmic terms is explored in
detail in Refs. [85, 86]. Generally, power-suppressed terms in b contribute to power-suppressed terms in µ, and
the logarithmic singularities at b ! 0 turn into logarithmic singularities at µ ! 1. For the leading power term,
the asymptotic behavior for b ! 0 and µ ! 1 are connected by simple replacement rules LO ! �`̀̀, L2

O
! `̀̀

2,
L3

O
! �`̀̀

3
� 4⇣3, etc., see Ref. [85] (here `̀̀ = ln(µ2

/µ
2

OPE
)). The OPE in Eq. (40) is independent of µOPE, and

therefore, it is conventional to set µOPE = µ (and hence `̀̀ = 0). Thus, the asymptotic form of Eq. (38) reads

G0[F ](x, µ) =

⇢
1+ ↵sC1 + ↵

2

s
C2 (45)

+↵
3

s

h2⇣3
3

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

�
+ C3

i
+O(↵4

s
)

�
⌦ f(x, µ) +O(µ�2),

where ↵s is evaluated at µ. Upon di↵erentiating this expression, we obtain:

µ
2

d

dµ2
f
(TMD)(x, µ) = P

0
⌦ f

(TMD)(x, µ). (46)

Here, the evolution kernel P 0 deviates from the MS DGLAP kernel P (defined in Eq. (43)) starting at order ↵2
s

P
0
� P = �↵

2

s
�0C1 � ↵

3

s
(2�0C2 � �0C1 ⌦ C1 + �1C1) +O(↵4

s
). (47)

Thus, we have established that the function f
(TMD) is a collinear PDF that obeys the DGLAP equation but is

computed in a scheme di↵erent from MS. As we stated in the previous subsection, we refer to this scheme as the
TMD-scheme. The same result holds for helicity and transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coe�cient functions C.

The transition from the TMD-scheme to the MS-scheme is accomplished through multiplication by a finite renor-
malization matrix Z

f
(MS)

f
(x, µ) =

X

f 0

Z
1

x

dy

y
Z

MS/TMD

f f 0 (y, µ)f (TMD)

f 0

✓
x

y
, µ

◆
, (48)

where the PDF on the left-hand side is the collinear PDF in MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS/TMD can be obtained by eliminating terms in Eq. (47). The
result reads

Z
MS/TMD = 1� ↵sC1 � ↵

2

s
(C2 � C1 ⌦ C1) (49)

�↵
3

s


C3 + C1 ⌦ C1 ⌦ C1 � C1 ⌦ C2 � C2 ⌦ C1 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
).

9

� (P3 + C1 ⌦ P2 + C2 ⌦ P1 � 2�0C2 � �1C1)LO + C3

i
+O(↵4

s
),

where the leading term 1 ⌘ �ff 0�(1 � y) represents the unity convolution, Cn are the finite parts of the coe�cient
function free from any logarithmic dependence, and Pn stand for the perturbative coe�cients of the DGLAP kernel,
as given by

µ
2

d

dµ2
f(x, µ) =

 
1X

n=1

↵
n

s
(µ)Pn(x)

!
⌦ f(x, µ) = P ⌦ f(x, µ). (43)

Furthermore, �n represent the coe�cients of the QCD beta-function, defined by

µ
2

d

dµ2
↵s(µ) = �

1X

n=0

�n↵
n+2

s
(µ). (44)

Expressions for the coe�cient functions for the unpolarized TMD can be found in Refs. [30, 31, 63, 67] up to
↵
3
s
-order, for helicity TMD in Ref. [61, 64] up to ↵

1
s
, and for transversity TMD in Ref. [65] up to ↵

2
s
. The expressions

presented in these references apply to general scales (µ, ⇣), and in Appendix A 2 we provide the rules to render those
into ⇣-prescription. It is essential to emphasize that all computations are in the MS-scheme, and consequently, PDFs
in Eq. (40) are defined in the MS-scheme.

The relationship between the small-b and large-µ asymptotic expansions with logarithmic terms is explored in
detail in Refs. [85, 86]. Generally, power-suppressed terms in b contribute to power-suppressed terms in µ, and
the logarithmic singularities at b ! 0 turn into logarithmic singularities at µ ! 1. For the leading power term,
the asymptotic behavior for b ! 0 and µ ! 1 are connected by simple replacement rules LO ! �`̀̀, L2

O
! `̀̀

2,
L3

O
! �`̀̀

3
� 4⇣3, etc., see Ref. [85] (here `̀̀ = ln(µ2

/µ
2

OPE
)). The OPE in Eq. (40) is independent of µOPE, and

therefore, it is conventional to set µOPE = µ (and hence `̀̀ = 0). Thus, the asymptotic form of Eq. (38) reads

G0[F ](x, µ) =

⇢
1+ ↵sC1 + ↵

2

s
C2 (45)

+↵
3

s

h2⇣3
3

�
P1 ⌦ P1 ⌦ P1 � 3�0P1 ⌦ P1 + 2�2

0
P1

�
+ C3

i
+O(↵4

s
)

�
⌦ f(x, µ) +O(µ�2),

where ↵s is evaluated at µ. Upon di↵erentiating this expression, we obtain:

µ
2

d

dµ2
f
(TMD)(x, µ) = P

0
⌦ f

(TMD)(x, µ). (46)

Here, the evolution kernel P 0 deviates from the MS DGLAP kernel P (defined in Eq. (43)) starting at order ↵2
s

P
0
� P = �↵

2

s
�0C1 � ↵

3

s
(2�0C2 � �0C1 ⌦ C1 + �1C1) +O(↵4

s
). (47)

Thus, we have established that the function f
(TMD) is a collinear PDF that obeys the DGLAP equation but is

computed in a scheme di↵erent from MS. As we stated in the previous subsection, we refer to this scheme as the
TMD-scheme. The same result holds for helicity and transversity zeroth TMM, employing the pertinent DGLAP
kernels P and coe�cient functions C.

The transition from the TMD-scheme to the MS-scheme is accomplished through multiplication by a finite renor-
malization matrix Z

f
(MS)

f
(x, µ) =

X

f 0

Z
1

x

dy

y
Z

MS/TMD

f f 0 (y, µ)f (TMD)

f 0

✓
x

y
, µ

◆
, (48)

where the PDF on the left-hand side is the collinear PDF in MS scheme (explicitly indicated by the superscript MS).

Expressions for the finite renormalization constant ZMS/TMD can be obtained by eliminating terms in Eq. (47). The
result reads

Z
MS/TMD = 1� ↵sC1 � ↵

2

s
(C2 � C1 ⌦ C1) (49)

�↵
3

s


C3 + C1 ⌦ C1 ⌦ C1 � C1 ⌦ C2 � C2 ⌦ C1 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
).
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FIG. 2. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (extraction ART23 [22]), as
a function of µ at fixed x = 0.1. The plot shows the deviation from the MS-value which was used in the fit of TMD (extraction

MSHT20 [87]). Di↵erent lines correspond to di↵erent orders of correction factor ZMS/TMD.

FIG. 3. Comparison of uncertainty bands for unpolarized PDF for u and d quarks as a function of x at fixed µ = 20 GeV.
The blue band is the uncertainty band determined from the uncertainty band of unpolarized TMD (extraction ART23 [22]).
The yellow band is the uncertainty band for unpolarized PDF (extraction MSHT20 [87]). Comparison is done with N2LO

ZMS/TMD.

The first TMMs are expressed via the transformation G1 ⌘ G1,1, Eqs. (34), and they are given by:

M
[�

+
]

µ
(x, µ) = �✏T,µ⌫s

⌫

T
MG1[f

?

1T
](x, µ), (61)

M
[�

+
�
5
]

µ
(x, µ) = �sTµMG1[g

?

1T
](x, µ), (62)

M
[i�

↵+
�
5
]

µ
(x, µ) = ��gT,µ↵MG1[h

?

1L
](x, µ)� ✏T,µ↵MG1[h

?

1
](x, µ). (63)

These quantities can be interpreted as the average displacement of the transverse momentum of a parton within a
polarized hadron [24, 46–48, 90, 91]. Their non-zero values are a consequence of the presence of the spin, whether it
be the spin of the proton or the parton. Notice that all functions in b-space have index (1), and the operation Gn,m

(34) is performed with n = m = 1. This corresponds to the first moment of TMDs in the momentum space from
Eq. (15).

The small-b expansion structure for these TMDs di↵ers from what was considered in Section V for f1, g1, and h1.
Schematically this OPE can be expressed as

eF (x, b) =
X

t

[ eCt(LO)⌦ t](x) +O(b2), (64)

where t represents collinear distributions of twist-two, -three, or -four, and ⌦ denotes an integral convolution in

Above  GeV the correspondence is quite preciseμ ≥ 5

ZEROTH TMM

27



12

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

0.04

0.001 0.010 0.100 1

10-4 0.001 0.010 0.100 1

-0.04

-0.02

0.00

0.02

0.04

0.001 0.010 0.100 1

FIG. 1. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (central values of ART23
extraction [22]), as a function of x at fixed µ = 10 (the upper row) and 20 GeV (the bottom row). The plots show the deviation
from the MS-value which was used in the fit of TMD (extraction MSHT20 [87]). Dashed orange lines, dotted blue lines, and

solid green lines correspond to LO, NLO, and N2LO order of factor ZMS/TMD.

Figure 2 shows ZMS/TMD
⌦ G0[f1](x, µ) at x = 0.1 as a function of µ and compares it to MSHT20 [87]. This figure

demonstrates that f (TMD) reproduces very well the evolution of collinear PDF. One can see that the agreement starts
from µ ⇠ 5 GeV. For lower values of the scale µ, the power corrections are substantial, and caution should be exercised
in the application of our formulas.

Lastly, Figure 3 illustrates that the uncertainty band of TMD reproduces the uncertainty band of collinear PDF.
This is a feature of the ART23 extraction, which incorporates PDF uncertainty into the TMD uncertainty band.
Figure 3 provides an important consistency test demonstrating that the input PDF is recovered completely with the
correct uncertainty band. Possibly one can consider this feature in a broader context of proposed joined fits of TMDs
and PDFs. TMM discussed in this paper can be utilized as an additional consistency check for the output of such a
fit for the mean values and for the uncertainty bands.

VI. THE FIRST TRANSVERSE MOMENTUM MOMENT

The first TMMs read:

M
[�

+
]

µ
(x, µ) =

Z
µ

d
2kTkTµF

[�
+
](x, kT ) = �

Z
µ

d
2kTkTµ✏

⇢⌫

T

kT⇢sT⌫

M
f
?

1T
(x, kT ),

M
[�

+
�5]

µ
(x, µ) =

Z
µ

d
2kTkTµF

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kTkTµ

(kT · sT )

M
g
?

1T
(x, kT ), (60)

M
[i�

↵+
�
5
]

µ
(x, µ) =

Z
µ

d
2kTkTµF

[i�
↵+

�
5
](x, kT ) =

Z
µ

d
2kTkTµ

�k
↵

T

M
h
?

1L
(x, kT )�

Z
µ

d
2kTkTµ

✏
↵⇢

T
kT⇢

M
h
?

1
(x, kT ).

➤ TMDs are from ART 23 extraction V. Moos, I. Scimemi, A. Vladimirov, and P. Zurita, (2023), 
arXiv:2305.07473
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 We can reproduce the errors: a very nice consistency check.

ZEROTH TMM: 
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 The  TMM is related the small-b power expansion of a TMD1st

I. S., A. Vladimirov, Eur. Phys. J. C 78, 802 (2018),  F. Rein, S. Rodini, A. Schäfer, and A. Vladimirov, JHEP 01, 116 (2023)
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momentum fractions. Two notable di↵erences between Eq. (40) and Eq. (64) are noteworthy. Firstly, twist-three and
twist-four distributions t depend on two or more collinear momentum fractions. Therefore, the convolution with the
coe�cient function projects several variables onto a single variable x in the LHS of Eq. (64). For example, the leading
term for the small-b expansion of the Sivers function is a projection [92, 93] of twist-three distributions T (x1, x2, x3)
onto the Qiu-Sterman function

ef?(1)

1T
(x, b) = ±⇡T (�x, 0, x) +O(↵s, b

2). (65)

where ± corresponds to either SIDIS, “� ” or Drell-Yan, “ + ”. The corresponding coe�cient function at the zeroth
order in ↵s is �(x2)�(x + x1)�(x � x3). The second di↵erence is that the formula (64) relates one TMD to several
collinear distributions. For instance, the Sivers TMD f

?

1T
is related to the twist-three distribution T (x1, x2, x3), and

(starting from NLO) to the twist-three distribution �T (x1, x2, x3) [69]. The worm-gear-T TMD g
?

1T
is related to

the twist-two helicity distributions �q and to the twist-three distributions T and �T [70], and so forth. Explicitly
[70, 94]:

G1[f
?

1T
](x, µ) = ±

⇡

2
T

(TMD)(�x, 0, x;µ) +O(µ�2),

G1[g
?

1T
](x, µ) =

x

2

Z
1

x

dy

y
�q

(TMD)(y, µ) + x

Z
1

�1

dy1dy2dy3�(y1 + y2 + y3)

Z
1

0

d↵�(x� ↵y3)
h

�T
(TMD)(y123;µ)

y
2
2

+
T

(TMD)(y123;µ)��T
(TMD)(y123;µ)

2y2y3

i
+O(µ�2), (66)

G1[h
?

1L
](x, µ) = �

x
2

2

Z
1

x

dy

y
�q

(TMD)(y, µ)

�x

Z
1

�1

dy1dy2dy3�(y1 + y2 + y3)

Z
1

0

d↵↵�(x� ↵y3)H
(TMD)(y123;µ)

y3 � y2

y
2
2
y3

+O(µ�2),

G1[h
?

1
](x, µ) = ⌥

⇡

2
E

(TMD)(�x, 0, x;µ) +O(µ�2),

where the shorthand y123 ⌘ y1, y2, y3, functions T , �T , H and E are twist-3 collinear PDFs whose explicit definitions
can be found in Refs. [70, 95, 96]. The signs of the first and the last equation should be understood as Drell-Yan, the
upper signs, and SIDIS, the lower sign.

These features are also characteristics of the collinear matrix elements M[�]

µ from Eq. (4) which lack definite twist
and consequently represent a mixture of di↵erent contributions.

The perturbative structure of coe�cient eCt in the ⇣-prescription follows a form similar to Eq. (42). It can be written
as

eCt = Rt ⌦
�
1+ ↵s (�P1tLO + C1t) +O(↵2

s
)
�
, (67)

where Rt is the projection operator, and Pt =
P

n
↵
n
s
Pnt. The projection operator Rt projects the multi-variable

higher-twist distribution to the single variable x. For instance, in the case of Sivers function the operation Rt is
⇡�(x2)�(x1+x2+x3)�(x3�x), which being integrated with twist-three distribution T (x1, x2, x3) results into Eq. (65).
The coe�cients C1t are known for all TMDs except h

?

1T
, see Refs. [69, 70, 97–99]. The presence of the projection

operator does not allow one to turn Mµ to the MS-scheme, as it would require a convolution with all variables xi.
Nevertheless, the di↵erence between Mµ in TMD-scheme and the MS-scheme starts at NLO, alike for the zeroth
TMM. To demonstrate this, one can di↵erentiate Mµ with respect to the scale and from Eq. (67) one obtains

µ
2

d

dµ2
G1[F ](x, µ) = Rt ⌦ P

0

t
⌦ t+O(↵2

s
), (68)

where F represents any of the TMDs appearing in Eqs. (61-63). The right-hand-side of Eq. (68) is the LO evolution
of Mµ in the MS-scheme. At NLO, there is a term containing the one-loop finite part C1t, which deviates from the
expression in the MS-scheme (see Eq. (47)) and so we have P 0

t
�Pt = O(↵2

s
). Note, that presently the twist-3 evolution

kernel is known only at order ↵s. Thus, collinear distributions determined by TMMs are as precise as determinations
by other methods.

There is one “accidental” exception from this general rule. Namely, the Boer-Mulders function h
?
1
that has C1t that

commutes with the projector C1t = �⇣2CF1 [70]. Also Boer-Mulder function is chiral-odd, and does not mix with
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where the shorthand y123 ⌘ y1, y2, y3, functions T , �T , H and E are twist-3 collinear PDFs whose explicit definitions
can be found in Refs. [70, 95, 96]. The signs of the first and the last equation should be understood as Drell-Yan, the
upper signs, and SIDIS, the lower sign.
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where F represents any of the TMDs appearing in Eqs. (61-63). The right-hand-side of Eq. (68) is the LO evolution
of Mµ in the MS-scheme. At NLO, there is a term containing the one-loop finite part C1t, which deviates from the
expression in the MS-scheme (see Eq. (47)) and so we have P 0
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kernel is known only at order ↵s. Thus, collinear distributions determined by TMMs are as precise as determinations
by other methods.

There is one “accidental” exception from this general rule. Namely, the Boer-Mulders function h
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that has C1t that

commutes with the projector C1t = �⇣2CF1 [70]. Also Boer-Mulder function is chiral-odd, and does not mix with
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where the shorthand y123 ⌘ y1, y2, y3, functions T , �T , H and E are twist-3 collinear PDFs whose explicit definitions
can be found in Refs. [70, 95, 96]. The signs of the first and the last equation should be understood as Drell-Yan, the
upper signs, and SIDIS, the lower sign.
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and consequently represent a mixture of di↵erent contributions.
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higher-twist distribution to the single variable x. For instance, in the case of Sivers function the operation Rt is
⇡�(x2)�(x1+x2+x3)�(x3�x), which being integrated with twist-three distribution T (x1, x2, x3) results into Eq. (65).
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operator does not allow one to turn Mµ to the MS-scheme, as it would require a convolution with all variables xi.
Nevertheless, the di↵erence between Mµ in TMD-scheme and the MS-scheme starts at NLO, alike for the zeroth
TMM. To demonstrate this, one can di↵erentiate Mµ with respect to the scale and from Eq. (67) one obtains
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where F represents any of the TMDs appearing in Eqs. (61-63). The right-hand-side of Eq. (68) is the LO evolution
of Mµ in the MS-scheme. At NLO, there is a term containing the one-loop finite part C1t, which deviates from the
expression in the MS-scheme (see Eq. (47)) and so we have P 0
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). Note, that presently the twist-3 evolution

kernel is known only at order ↵s. Thus, collinear distributions determined by TMMs are as precise as determinations
by other methods.
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FIG. 4. The first TMM for the Sivers function (extraction [49, 50]) for di↵erent flavors, computed at µ = 10 GeV.

twist-3 gluon distributions. Therefore, in this case, one can find the NLO part of the transformation factor between
TMD and MS-schemes

✓
1 + as(µ)CF

⇡
2

6

◆
G1[h

?

1
] = ⌥

⇡

2
E(�x, 0, x)(1 +O(a2

s
)), (69)

where E is the chiral-odd distribution of twist-3, see definition in Refs. [70, 96]. However, one can not expect that
such construction would be possible beyond NNLO.

Thus, the first TMM Mµ is related to Mµ computed in the TMD-scheme. Since the matrix element Mµ is not an
autonomous function (in the sense that it mixes with other functions by the QCD evolution), one cannot transformMµ

to the MS-scheme without using extra information. Certainly, the connections between twist-3 and TMD functions
present intriguing avenues for further theoretical and phenomenological investigations [48, 71].

A. General scales

At general scales, the OPE can be formally represented as

eF (x, b;µOPE, µTMD, ⇣) =
X

t

[Ct(LO,LT , `̀̀T )⌦ t](x) +O(b2), (70)

where the summation is over collinear distributions of twist-two, -three, or -four, and ⌦ denotes an integral convolution
in momentum fractions. Analogously to the case discussed earlier, the coe�cient Ct contains the projection operator
Rt, preventing the direct transformation of the first TMMs, Mµ, to the MS-scheme. Therefore, the persisting
challenges in the transformation from the TMD scheme to the MS-scheme, previously observed for the optimal TMD
case, continue to apply at general scales, even when considering the specific set of scales of Eq. (51).

B. Phenomenological example

The Sivers function has attracted considerable attention in the literature [24, 46–50, 90, 91]. This function is
related [92, 93] to the Qiu-Sterman function and provides a 3D snapshot of the transversely polarized nucleon. One

of the interesting features of the Sivers function is encoded in its first TMM M
[�

+
]

µ , as it can be interpreted as the
average transverse momentum shift of partons with given x due to the spin-orbital interactions [47].

We compute M[�
+
]

µ using recent extractions of the Sivers function at N3LO [49, 50]. In these extractions, u, d, and

sea quark Sivers functions were determined. Figure 4 illustrates M[�
+
]

µ for u, d, and sea quarks based on Refs. [49, 50].
If one integrates over x, the result can be interpreted as the mean transverse momentum shift of a parton in a

transversely polarized hadron. Let us denote [47]

hkf

T,⌫
i(µ) =

Z
1

0

dxM
[�

+
]

⌫,f
(x, µ), (71)

Using M. Bury, A. Prokudin, A. Vladimirov, Phys.Rev.Lett. 126 (2021)
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where f is the flavor index. As seen from Eq. (62), for a hadron polarized in the ŷ direction, we have ⌫ = 1. For the
extraction from [50], we obtain the following values at µ = 10 GeV

hku

T,1
i = �0.011+0.011

�0.023
GeV, hkd

T,1
i = 0.17+0.21

�0.17
GeV, hksea

T,1
i = �0.26+0.26

�0.32
GeV, (72)

where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d

T,1
i = �0.3 · · ·� 0.15 GeV.

The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as

X

f=q,q̄,g

Z
1

0

dxM
[�

+
]

⌫,f
(x, µ) =

X

f=q,q̄,g

hkf

T,⌫
i = 0. (73)

While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as

X

f=q,q̄,g

hkf

T,⌫
i = hkT,⌫i , (74)

then, intriguingly, the Burkardt sum rule exhibits autonomous evolution at LO [103]

µ
2

d

dµ2
hkT,⌫i = �

↵s

2⇡
CAhkT,⌫i+O(↵2

s
). (75)

Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is

X

f=q,q̄

hkf

T,1
i = hkT,1i � hkg

T,1
i = �0.14+0.14

�0.31
GeV. (76)

This allows us to estimate the contribution of the gluon Sivers function as hkg

T,1
i ' 0.14+0.31

�0.14
GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.

VII. THE SECOND TRANSVERSE MOMENTUM MOMENT

Now, we proceed to derive expressions for the second TMMs:

M
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+
]

µ⌫
(x, µ) =

Z
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2kTkTµkT⌫F
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+
](x, kT ) =

Z
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�
5
](x, kT ) = �

Z
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2kTkTµkT⌫g1(x, kT ), (77)
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?

1T
(x, kT ).

By considering the operation defined in Eq. (32) with n ! n+ 1 and m ! n, we obtain

Gn+1,n[F ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n+1

F (x, kT ) (78)

=
1

2M2n!

Z
1

0

db µ
3

✓
µb

2

◆n (n+ 1)Jn+1(µb)� Jn+3(µb)

n+ 2
eF (n)(x, b),

which, for the second moment, contributes solely with indices (1, 0), leading to
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extraction from [50], we obtain the following values at µ = 10 GeV

hku

T,1
i = �0.011+0.011

�0.023
GeV, hkd

T,1
i = 0.17+0.21

�0.17
GeV, hksea

T,1
i = �0.26+0.26

�0.32
GeV, (72)

where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d

T,1
i = �0.3 · · ·� 0.15 GeV.

The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as

X

f=q,q̄,g

Z
1

0

dxM
[�

+
]

⌫,f
(x, µ) =

X

f=q,q̄,g

hkf

T,⌫
i = 0. (73)

While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as

X

f=q,q̄,g

hkf

T,⌫
i = hkT,⌫i , (74)

then, intriguingly, the Burkardt sum rule exhibits autonomous evolution at LO [103]

µ
2

d

dµ2
hkT,⌫i = �

↵s

2⇡
CAhkT,⌫i+O(↵2

s
). (75)

Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is

X

f=q,q̄

hkf

T,1
i = hkT,1i � hkg

T,1
i = �0.14+0.14

�0.31
GeV. (76)

This allows us to estimate the contribution of the gluon Sivers function as hkg

T,1
i ' 0.14+0.31

�0.14
GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.

VII. THE SECOND TRANSVERSE MOMENTUM MOMENT

Now, we proceed to derive expressions for the second TMMs:

M
[�

+
]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[�
+
](x, kT ) =

Z
µ

d
2kTkTµkT⌫f1(x, kT ),

M
[�

+
�5]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kTkTµkT⌫g1(x, kT ), (77)

M
[i�

↵+
�
5
]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[i�
↵+

�
5
](x, kT ) = s

↵

T

Z
µ

d
2kTkTµkT⌫h1(x, kT )

�

Z
µ

d
2kTkTµkT⌫

k2

T

M2

✓
g
↵⇢

T

2
+

k
↵

T
k
⇢

T

k2

T

◆
sT⇢h

?

1T
(x, kT ).

By considering the operation defined in Eq. (32) with n ! n+ 1 and m ! n, we obtain

Gn+1,n[F ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n+1

F (x, kT ) (78)

=
1

2M2n!

Z
1

0

db µ
3

✓
µb

2

◆n (n+ 1)Jn+1(µb)� Jn+3(µb)

n+ 2
eF (n)(x, b),

which, for the second moment, contributes solely with indices (1, 0), leading to

potentially sizable gluon Sivers function



The  2nd moment is power divergent

The asymptotic power divergence part is computed analytically …
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M
[�

+
]

µ⌫,div
(x, µ) = �gT,µ⌫M

2
G1,0[f1], (79)

M
[�

+
�
5
]

µ⌫,div
(x, µ) = ��gT,µ⌫M

2
G1,0[g1], (80)

M
[i�

↵+
�
5
]

µ⌫,div
(x, µ) = sT,↵gT,µ⌫M

2
G1,0[h1] + (gT,µ↵sT,⌫ + gT,⌫↵sT,µ � gT,µ⌫sT,↵)

M
2

2
G2[h

?

1T
]. (81)

Notice that the contributions of f1, g1, and h1 involve the operation G1,0, while h
?

1T
contributes to the second TMM

through G2. The subscript “div” in Eqs. (79-81), indicates that these functions exhibit power divergences at large
µ, as discussed below. The very last term of Eq. (81) corresponds to the collinear counterpart of the pretzelocity.
It incorporates twist-three and twist-four distributions [33] and reproduces the MS expression up to NLO. Its lnµ
divergence is the same UV divergence as in the corresponding twist-4 operator, and doing the same derivations as
in Section V, we conclude that this TMM reproduces the collinear counterpart of the pretzelocity h

?

1T
function.

To establish a connection between Eqs. (79-81) and the matrix elements in Eq. (4), it is necessary to examine the
small-b OPE up to the first power of b2. The general form of this expansion is given by

eF (x, b) = eC ⌦ f + b
2
X

k

eC(2)

k
⌦ f

tw 4

k
+O(b4), (82)

where the first term is presented in Eq. (40), and the second term represents the power correction, typically involving
distributions of twist-four and target mass corrections. The coe�cients eC(2) are presently unknown (except for the
target-mass corrections part at the tree order [33]). Notably, at the tree order, the b

2-term in the OPE Eq. (82) is
equivalent to the matrix element M in Eq. (5) (with appropriately contracted indices). Thus, to relate Mµ⌫,div and

Mµ⌫ , it is necessary to subtract the leading small-b contribution, eC ⌦ f .
The integrals of the type Gn+1,n behave as / µ

2 at large µ reproducing the UV power divergence of the corresponding
operator Mµ⌫ , which is defined in Eq.(4). However, in the dimensional regularization and the MS-scheme, these power
divergences are omitted. Therefore, to match with the MS scheme, one needs to subtract the leading / µ

2 behaviour
from Mµ⌫ . The resulting function Mµ⌫ is the matrix element Mµ⌫ computed in a minimal subtraction scheme
(TMD-scheme), which coincides with MS up to NLO. This relation is proven analogously to the approach used in the
previous Sections.

The asymptotic part of Gn+1,n can be computed analytically. We express the Gn+1,n transformation as

Gn+1,n[F ](x, µ) =
µ
2

2M2
AS[Gn+1,n[F ]](x, µ) + Gn+1,n[F ](x, µ), (83)

where AS[Gn+1,n[F ]] denotes the leading asymptotic term that can be derived from the first term in the OPE, Eq. (82).
The term Gn+1,n corresponds to Mµ⌫ in the TMD-scheme, and it undergoes logarithmic evolution. Hence, the second
moments in the MS-scheme (up to NLO) are given by

M
[�

+
]

µ⌫
(x, µ) = �gT,µ⌫M

2
G1,0[f1](x, µ), (84)

M
[�

+
�
5
]

µ⌫
(x, µ) = ��gT,µ⌫M

2
G1,0[g1](x, µ), (85)

M
[i�

↵+
�
5
]

µ⌫
(x, µ) = sT,↵gT,µ⌫M

2
G1,0[h1](x, µ) + (gT,µ↵sT,⌫ + gT,⌫↵sT,µ � gT,µ⌫sT,↵)

M
2

2
G2[h

?

1T
](x, µ). (86)

The asymptotic term AS[G1,0[F ]] for the cases f1, g1, and h1 can be derived straightforwardly using Eq. (42). Up to
N3LO, the expression reads:

AS[G1,0[F ]](x, µ) =
n
↵sP1 + ↵

2

s
[P2 + (C1 � P1)⌦ (P1 � �01)]

+↵
3

s

h
P3 + (C1 � P1)⌦ (P2 � �11) + (C2 � P2)⌦ (P1 � 2�01)

� (C1 � P1)⌦ (P1 � �01)⌦ (P1 � 2�01)
i
+O

�
↵
4

s

�o
⌦ f(x, µ), (87)

where f is the collinear PDF corresponding to F . This expression can be numerically computed using existing codes
for TMD phenomenology 5.

5 Most codes for TMD phenomenology, see e.g. Ref. [45], include the computation of the leading terms for the small-b OPE in position
space. In order to obtain Eq. (87), one should replace the logarithmic terms of the coe�cient function in Eq. (42) according to the rule

L0

O
! 0, LO ! �1, L2

O
! �2, L3

O
! �3!, L4

O
! �4! + 16⇣3, etc.,

where L0

O
corresponds to the logarithm-less part of the coe�cient function.

19

FIG. 5. Values of hk2

T i computed for ART23 extraction of unpolarized TMD as a function of µ. Solid and dashed orange lines
are for d-quark, and solid and dashed blue lines are for u-quark. Dashed lines show the value of hk2

T i without subtraction term.

FIG. 6. Values of xhk2

T i computed for ART23 extraction of unpolarized TMD as a function of x at µ = 10 GeV. The two colors
distinguish di↵erent flavors. The uncertainty band is evaluated from the uncertainty band of ART23 extraction.

A meaningful estimate of the width of distributions in the momentum space is via the second TMM, hk2

T
i =

�g
µ⌫

T
M

[�
+
]

µ⌫ = 2M2
G1,0[f1]. An example of the evaluation of hk2

T
i is presented in Fig. 5. It confirms that the

asymptotic term cancels the power growth of the G1,0 transformation.6 The resulting line exhibits a general logarithmic
behavior. In Fig. 5, we do not present uncertainty bands because they are quite large, on the order of 25� 35% for
u and d quarks (at µ = 20 GeV), and 50%� 60% for ū and d̄ quarks.

We have also observed that at large-µ, the curve for AS[G1,0] oscillates (the first sign of oscillation is seen in the
left panel of Fig. 5). This is a result of the number-flavor-variation scheme used in ART23. The change of Nf in the
coe�cient function generates tiny discontinuities in F (x, b) at certain values of b. In turn, they generate oscillations in
the Hankel transform. The oscillations are small (see, e.g., Fig. 2, where the same oscillations are present but barely
visible). However, the subtraction of the asymptotic term amplifies the oscillations by a power factor and a↵ects the
entire procedure. This implies that the determination of second moments places more stringent requirements on the
TMD model.

In Fig. 6, we plot xhk2

T
i as a function of x at µ = 10 GeV. Notice that one can see from Fig. 6 that the width

resulting from ART23 extraction grows with the decrease of x. This growth is associated with the e↵ects of the
gluon shower that is characteristic of high energies. We also see that ART 23 has flavor dependence for widths, with

6 However, the cancellation is not very precise because we use AS[G1,0] only at N3LO. Therefore, at very large values of µ (we have
used µmax = 100 GeV in our studies), one observes a power growth in G1,0. The terms that generate this growth are induced by
higher perturbative order (N4LO in the present example) logarithms in the evolution of f that are not compensated by the coe�cient
function. Thus, the cancellation of the asymptotic term can be facilitated by a minor variation of the scale. We have found that for our
computation, it is su�cient to change µ ! 1.014µ to eliminate the asymptotic term very precisely in a wide range of µ.
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SECOND TMM

𝒢n+1,n[F](x, μ) =
μ2

2M2
AS[𝒢n+1,n[F]](x, μ) + 𝒢n+1,n[F](x, μ),

… the width of TMDs
32
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SECOND TMM

⟨x ⃗k2
T⟩u = 0.52 ± 0.12 GeV2, ⟨x ⃗k2

T⟩d = 1.10 ± 0.28 GeV2,

⟨x ⃗k2
T⟩ū = 0.42 ± 0.06 GeV2, ⟨x ⃗k2

T⟩d̄ = 0.024 ± 0.004 GeV2 . 33



ART23 reaches N4LL (caveat PDF), flavor dependence of TMD included, 
latest DY data, complete evaluation of errors (PDF errors!!) 

TMM: a robust relations of the 3D and 1D nucleon structures are established, 
very precious definitions, especially for polarized measurements.

TMMs are weighted integrals of TMDs with an upper cut-off, they obey 
DGLAP (type) equations. As  result of integrations we obtain collinear 
functions in a particular TMD-scheme that is related to -scheme by a 
calculable factor 

The usage of TMMs will be useful in the future theoretical and 
phenomenological studies, as well as in lattice QCD studies  

SIDIS at low energy needs understanding Power Corrections

M̄S

CONCLUSIONS: SPIN UP!!



EIC@BNL, EICc@HIAF (2030’s), LHeC? 

All LHC labs+LHC initiatives (SMOG at LHCb, LHCSpin, etc.) 

Belle and Belle II 

CONCLUSIONS: FUTURE!!



BACK UP SLIDES



M. Bury, F. Hautmann, S. Leal-Gomez, I. S., A. Vladimirov, P.Zurita, JHEP 10 (2022) 118

We simplify models but with flavor separation to mitigate PDF bias

f f
NP(x, b) = exp  ( −

λf
1(1 − x) + λ f

2 x

1 + λ0x2b2
b2) f = u, ū, d, d̄, sea
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➤ Studied in great deal of details in 

L. Gamberg, A. Metz, D. Pitonyak, A. Prokudin Phys.Lett.B 781 (2018) 443-454
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Figure 2.9: Comparison of the cumulative integral of the TMD PDF over kT  kcut
T to the longitudinal

PDF for the d-quark with x ⇤ 0.01 and kcut
T ⇤ 10 GeV as a function of both µ and ⇣. The star denote

the special point µ ⇤
p
⇣ ⇤ kcut

T . The contours increase in steps of 5%, such that the innermost shaded
regions indicate deviations of ±5%. Taken from Ref.[183].

Astonishingly, one finds that even in the presence of perturbative corrections and renor-
malization group running the TMD PDF and PDF agree extremely well; for the natural choice
for the two renormalization scale parameters µ ⇤

p
⇣ ⇤ kcut

T the agreement is at the percent
level. Thus we can conclude that
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⇣
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This gives justification to the original physical picture underlying Eq. (2.159). The contour
bands in Fig. 2.9 also illustrate that the dependence on variations of either ⇣ or µ around kcut

T
is quite moderate, while there is a rather large effect of varying both scales simultaneously. As
explained in Chapter 4, a simultaneous variation, such as along the diagonal directions, in-
duces large double logarithms predicted by the hard evolution, which can not be compensated
by evolution of the collinear PDF.

To verify that the above observation is not an accidental feature of the values x ⇤ 0.01
and kcut

T ⇤ 10 GeV used so far, in Fig. 2.10 results for the comparison as a function of kcut
T (left

figure) and x (right figure) are given. Here the various sources of uncertainty are also assessed,
as indicated by the different colored bands. The yellow band shows very small uncertainties
from terms beyond third order in the 1/(bcut

T kcut
T ) expansion, which are assessed by varying the

choice of bcut
T used in the analysis. The green band shows the quite small uncertainties from
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bands in Fig. 2.9 also illustrate that the dependence on variations of either ⇣ or µ around kcut

T
is quite moderate, while there is a rather large effect of varying both scales simultaneously. As
explained in Chapter 4, a simultaneous variation, such as along the diagonal directions, in-
duces large double logarithms predicted by the hard evolution, which can not be compensated
by evolution of the collinear PDF.

To verify that the above observation is not an accidental feature of the values x ⇤ 0.01
and kcut
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flavors and no mixing with gluon TMD, even though collinear PDFs mix as can be seen from Eqs. (50,51,52). This
means also that the gluon TMD cannot be studied via scaling violations at least at this order.
We perform DGLAP evolution for the collinear functions f1(x, µb), g1(x, µb), h1(x, µb) using the HOPPET evolution

package [48].
The choices of non-perturbative functions that enter in Eq. (38) are the following (we use again the same function

for all three polarization cases just for illustration purposes):

f̂ q
NP(x, bT ) = exp

(
−
b2T ⟨k2T ⟩

4

)
, gK(bT ) = −g b2T , (53)

where ⟨k2T ⟩ = 0.25 (GeV2), g = 0.2 (GeV2). We also choose bmax = 1.5 (GeV−1).

The choice of f̂ q
NP corresponds to non-perturbative functions used in analysis of TMD functions at tree-level by

the Torino-Cagliari-JLab group [49, 50]. The choice of gK(bT ) is motivated by the so-called LBNY fit of Drell-Yan
cross-sections using CSS resummation formalism [51].
We will show the evolution of the TMD functions, as well as their integral over kT up to the value of Q, which we

conventionally referred to as their 0th kT -moment:

f q(x, kT ;µ, ζF ) , f q(x;µ, ζF ) ≡ 2π

∫ µ

0
kT dkT fq/P (x, kT ;µ, ζF ) . (54)

Note that this 0th kT -moment af a TMD functions f q(x;µ, ζF ) should not be confused with collinear PDF f q(x;µ).
In Fig. (4) we show results of the evolution of f q(x, kT ;Q,Q2) and f q(x;Q,Q2) at three different scales Q = 3.2, 10

and 100 GeV, for the unpolarized, helicity and transversity distributions. As one can see from Fig. (4), after evolution
the three functions become wider and are still very similar. The only appreciable differences are at higher transvese
momentum. The 0th kT -moments after evolution show some differences at low x. Compare our results with results of
collinear evolution of g1 and h1 presented, for example in Ref. [52]. As in the case of collinear evolution, also in TMD
evolution h1 becomes smaller than g1 under evolution and the difference grows with Q. The reason is the absence of
α1
s contributions to coefficient functions of transversity.
We also note that TMD functions at initial scale are very much similar to TMD functions parametrized at tree level

[49, 50] which thus justify extraction of those functions at tree level. Observables at different characteristic scales
however should be described using TMD evolution.
One can also observe that the so called Soffer bound [53]: |h1(x,Q2)| ≤ 1

2

(
f1(x,Q2) + g1(x,Q2)

)
, is also satisfied

for TMD distributions f q(x, kT ;Q,Q2) and f q(x;Q,Q2) numerically. Let us remind that Soffer bound for collinear
densities was shown to be preserved at LO accuracy in Ref. [26] and at NLO accuracy in Ref. [27]. We set aside the
discussion of Soffer bound for TMD functions for a separate publication.

IV. CONCLUSIONS

In this paper we calculated the evolution of the transverse-momentum-dependent (TMD) helicity and transversity
distribution functions. We adopted the definition of TMD PDFs as given by Collins in Ref. [6]. We provided explicit
formulas for all coefficient functions at αS . The results of this paper can be readily used in TMD phenomenology.
As an illustration, we calculated the unpolarized, helicity and transversity TMD distributions at different scales,

starting from the same initial conditions. The final results are very similar. Their 0th kT -moments differ at low x. We
observed that if started from equal initial conditions, helicity TMD distribution g1 becomes smaller than unpolarised
f1 distribution and transversity h1 becomes smaller than helicity g1 TMD.
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where g(x̂, µb) corresponds to the gluon distribution.
For the helicity distribution, using Eqs. (43, 46) we obtain

∑

j

(
∆Cj/i ⊗ gj1

)
(x, b∗;µb) = g1(x, µb) +

αsCF

2π

∫ 1

x

dx̂

x̂

(
1−

x

x̂

)
g1(x̂, µb) +

αsTf

π

∫ 1

x

dx̂

x̂

(
1−

x

x̂

)
∆g(x̂, µb) . (51)

Finally, for the transversity distribution, using Eqs. (44, 47) we obtain
∑

j

(
δCj/i ⊗ hj

1

)
(x, b∗;µb) = h1(x, µb) . (52)

Note that, as is well known for CSS resummation, at this order TMD evolution does not have mixing of different
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where g(x̂, µb) corresponds to the gluon distribution.
For the helicity distribution, using Eqs. (43, 46) we obtain

∑

j

(
∆Cj/i ⊗ gj1

)
(x, b∗;µb) = g1(x, µb) +

αsCF

2π

∫ 1

x

dx̂

x̂

(
1−

x

x̂

)
g1(x̂, µb) +

αsTf

π

∫ 1

x

dx̂

x̂

(
1−

x

x̂

)
∆g(x̂, µb) . (51)

Finally, for the transversity distribution, using Eqs. (44, 47) we obtain
∑

j

(
δCj/i ⊗ hj

1

)
(x, b∗;µb) = h1(x, µb) . (52)

Note that, as is well known for CSS resummation, at this order TMD evolution does not have mixing of different
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We now show that the improvements of Sec. 3.1 resolve the problems in the original CSS formalism (see Sec. 2.2) with integrating 
!(qT, Q , S), as well as the TMD functions, over transverse momentum. While "(qT /Q ) and X(qT /m) in (II), (III) are needed to help 
accurately describe the intermediate qT region, as we will see below, it is the bT → bc(bT ) modification of (I) that is crucial to recover 
the expected relations between TMD and collinear quantities. For the unpolarized case we find [1]

dσ

dxdydz
≡ 2

∫
d2 Ph⊥

∫
dφS !(qT, Q , S) = 4π z2 W̃ OPE

UU (b′
min, Q )LO + O (αs(Q )) + O ((m/Q )p)

= 4πα2
em

y Q2 (1 − y + y2/2)
∑

j

e2
j f j

1 (x;µc) Dh/ j
1 (z;µc) + O (αs(Q )) + O ((m/Q )p) , (51)

where µc ≡ limbT →0 µ̄ ≈ C1C5 Q /b0 (with µ̄ given in (41)) so that µc is on the order Q . This agrees with the result in [34]. Note that 
“O (αs(Q ))” includes the next-to-leading order (NLO) corrections to the coefficients C̃ and hard factors H along with the terms in the 
second and third lines of Eq. (50b) (since both are unsuppressed only at large qT ), and the O ((m/Q )p) correction is from replacing 
W̃UU(b′

min, Q ) with W̃ OPE
UU (b′

min, Q ) [1]. This result was first derived for the iCSS formalism in Ref. [1].
We now extend this to the Sivers case and obtain

d⟨Ph⊥ 'σ (ST )⟩
dxdydz

≡ 2
∫

d2 Ph⊥

∫
dφS Ph⊥ sin(φh − φS)!(qT, Q , S)

= −4π z3M P lim
b′

T →0

1
b′

T

[ ∞∫

0

dbT bT

∞∫

0

dqT qT bT J1(qT b′
T ) J1(qT bT ) W̃ siv

UT (bc(bT ), Q )LO

]

+ O (αs(Q ))

= −4π z3M P lim
b′

T →0

1
b′

T

[ ∞∫

0

dbT δ(bT − b′
T )bT W̃ siv

UT (bc(bT ), Q )LO

]

+ O (αs(Q ))

= −4π z3M P W̃ siv,OPE
UT (b′

min, Q )LO + O (αs(Q )) + O ((m/Q )p′
)

= 2π z α2
em

y Q2 (1 − y + y2/2)
∑

j

e2
j T j

F (x, x;µc) Dh/ j
1 (z;µc) + O (αs(Q )) + O ((m/Q )p′

) . (52)

Again we confirm the previous LO calculations in the literature [61]. Note as before that “O (αs(Q ))” includes the NLO corrections to the 
coefficients C̃ and hard factors H along with the terms in the second and third lines of Eq. (50b), and the O ((m/Q )p′

) correction is from 
replacing W̃ siv

UT (b′
min, Q ) with W̃ siv,OPE

UT (b′
min, Q ). Again in going from the second to the third line have used 

∫ ∞
0 dqT qT Jn(qT b′

T ) Jm(qT bT ) =
δnm δ(bT − b′

T )/bT .
We emphasize that it was crucial in (44) that the bT in (ĥ · bT) not get replaced by bc(bT ) in order to achieve the result (52). 

This manifests itself in the second line of (52), where the factor (qT bT ) appears instead of (qT bc(bT )). If, on the other hand, the 
bT → bc(bT ) replacement was made in (ĥ · bT), the third line in (52) would give a divergent result since then one would have a fac-
tor limb′

T →0 bc(b′
T )/b′

T = limb′
T →0 b′

min/b′
T . This example highlights the key observation needed in order to use the iCSS formalism with 

polarized observables. In general it is a statement that the bT → bc(bT ) prescription only applies to the bT dependence that is a part of 
the evolution and not to any external (kinematic) bT prefactors.

In terms of the momentum-space functions (45)–(47), we also find
∫

d2kT f j
1 (x,kT ; Q2,µQ ; C5) = f̃ j

1 (x,b′
min; Q2,µQ ) = f j

1 (x;µc) + O (αs(Q )) + O ((m/Q )p) , (53)

z2
∫

d2 pT D j
1(z, zpT ; Q2,µQ ; C5) = z2 D̃h/ j

1 (z,b′
min; Q2,µQ ) = Dh/ j

1 (z;µc) + O (αs(Q )) + O ((m/Q )p) , (54)

∫
d2kT

k2
T

2M2
P

f ⊥ j
1T (x,kT ; Q2,µQ ; C5) ≡ f ⊥(1) j

1T (x; Q2,µQ ; C5)

= f̃ ⊥(1) j
1T (x,b′

min; Q2,µQ ) = − 1
2M P

T j
F (x, x;µc) + O (αs(Q )) + O ((m/Q )p′

) , (55)

where again µc ≡ limbT →0 µ̄ ≈ C1C5 Q /b0 (with µ̄ given in (41)) so that µc is on the order Q .5 Note that, due to the bT → bc(bT )
modification, the above integrals on the l.h.s. are UV finite, yielding at LO and for Q ≫ m the renormalized collinear functions on the far 
r.h.s. To obtain these last equalities we have used the fact that b′

min ∼ O (1/Q ) so that we can replace (38)–(40) with their OPE pieces 
and expand the exponentials in powers of αs(Q ) without large logarithms. The correction terms also include NLO in the coefficients C̃ . 
The results in Eqs. (53)–(55) agree with our expectations from the “naïve” operator definitions of TMDs.6 In particular, Eq. (55) is the 
well-known relation between the first kT -moment of the Sivers function and the Qiu–Sterman function [62] (see also [49,57,63,64]). We 
emphasize that the relations between the integrals of the TMDs on the far l.h.s. of Eqs. (53)–(55) and the functions f̃1(x, b′

min; Q2, µQ ), 

5 Phenomenological fits of TMDs use C1 and bmax to optimize the perturbation theory. The fact that the collinear functions on the r.h.s. of (53)–(55) depend on these 
parameters via µc is a result of the truncation of the perturbative series in αs .

6 We will discuss specifically what we mean by “naïve” operator definition in Sec. 4.
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If TMDs are defined in a general scheme (TMD2-scheme), the same 
conclusions are valid, all scales should be defined by the cut-off
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The inverse factor can be expressed as

⇣
Z

MS/TMD

⌘�1

= 1+ ↵sC1 + ↵
2

s
C2 + ↵

3

s


C3 +

2⇣3
3

P1 ⌦ (P1 � �0 · 1)⌦ (P1 � 2�0 · 1)

�
+O(↵4

s
). (50)

The present state-of-the-art DGLAP equation precision is N2LO, making the terms of order ↵
2
s
in Eqs. (49-50)

su�cient for that level of accuracy. For the sake of completeness, we present our results up to ↵
3
s
.

Hence, using equations (38) and (49), one can determine collinear PDFs based on known values of TMDs. We
emphasize that the scheme-transformation factor Z is a matrix in flavor space. Consequently, to reconstruct a
collinear PDF with a precision beyond NLO, both quark and gluon TMDs are required.

B. TMDs at general scales

If one employs a set of arbitrary TMD scales (µTMD, ⇣), then, in general, it is not possible to reconstruct a collinear
PDF. The reason is the double-logarithm form of the coe�cient function, which has an auxiliary arbitrary scale µOPE

and which produces an extra logarithmic contribution into the evolution of G0[F ] already at LO. These terms cannot
be removed by any finite renormalization. However, in the special case

µ = µOPE = µTMD =
p

⇣, (51)

the collinear PDF is obtained in a TMD2-scheme, which can be converted to the MS-scheme through a finite renor-
malization constant, di↵erent from the one obtained in Eq. (49).

The most general coe�cient function of the small-b OPE for the TMD F (x, b;µTMD, ⇣) involves three scales3 µOPE,
µTMD, ⇣. The expression for it has the following structure

C(LO,LT , `̀̀T ) = 1+ ↵s

⇢✓
�
�0

4
L2

T
+

�0

2
LT `̀̀T �

�1

2
LT

◆
· 1� P1LO + C1

�
(52)

+↵
2

s

⇢
�2
0

32
L2

T
(LT � 2`̀̀T )

2 +
�0�1

8
L2

T
(LT � 2`̀̀T ) +

�0�0

12
LT

�
L2

T
� 3LT `̀̀T � 3LTLO + 6LO`̀̀T

�

+L2

T

�
2
1
+ 2�1�0

8
� LT (LT � 2`̀̀T )

�1 + �0C1

4
� LT

�2 + 2d(2,0) + �1C1

2
+ `̀̀T d

(2,0)

�
· 1

+
�0

4
LTLO (LT � 2`̀̀T )P1 + LTLO

�1

2
(P1 � �0 · 1) +

1

2
L2

O
P1 ⌦ (P1 � �0 · 1)

�LO(P2 + C1 ⌦ (P1 � �0 · 1)) + C2

�
+O(↵3

s
),

where ↵s is at the scale µOPE, and

LO = ln

✓
µ
2

OPE
b
2

4e�2�E

◆
, LT = ln

✓
µ
2

TMD
b
2

4e�2�E

◆
, `̀̀T = ln

✓
µ
2

TMD

⇣

◆
. (53)

Note that the finite parts of the coe�cient function Ci are di↵erent from Ci for the optimal TMD. The relation
between them is provided in Eq. (A9) in Appendix A 2.

The evaluation of G0 through the OPE e↵ectively replaces ln b by lnµ, where µ is the integral cut-o↵ in the operation
G0. Therefore, the resulting function depends on the scales µ, µTMD, and ⇣. Importantly, the dependence on µ does
not reproduce the DGLAP equation. Setting µOPE = µ we obtain

µ
2

d

dµ2
G0[F ](x, µ, µTMD, ⇣) =

⇢⇣
P (µ) +

�V (µ)� �cusp(µ)`̀̀µ
2

· 1
⌘
+ ↵

2

s

h⇣�2
0

8
`̀̀µ(`̀̀

2

µ
� `̀̀

2

T
)

�
�0�1

8
(`̀̀µ � `̀̀T )(3`̀̀µ + `̀̀T ) +

�
2
1

4
(`̀̀µ � `̀̀T ) + d

(2,0) +
�2
0

2
⇣3

⌘
· 1+

1

4
�0(`̀̀

2

T
� `̀̀

2

µ
)P1

+�1(`̀̀µ � `̀̀T )P1 �
�0

2
`̀̀µC1 + C1 ⌦ P1 +

⇣
�1

2
� �0

⌘
C1

i
+O(↵3

s
)

�
⌦ f(x, µ), (54)

3 Notice that µOPE dependence cancels with that in the evolution of the collinear PDFs in Eq.(40).

11

where ↵s ⌘ ↵s(µ) and we also define

`̀̀µ = ln

✓
µ
2

⇣

◆
. (55)

This equation does not exhibit the DGLAP structure and cannot be reduced to it through any finite factor, due to
`̀̀µ term which is present at LO. Additionally, this function depends on µTMD and ⇣, as encoded in Eqs. (17-18).

On the other hand, these issues can be avoided by setting scales as specified in Eq. (51). This choice of scales
significantly simplifies the logarithmic structure of the coe�cient function Eq. (52), and the evolution equation now
becomes

µ
2

d

dµ2
f
(TMD2)(x, µ) = P ⌦ f

(TMD2)(x, µ), (56)

where we denote f (TMD2)(x, µ) ⌘ G0[F ](x, µ, µ, µ2). The evolution kernel P deviates from the DGLAP kernel at order
↵
2
s
, akin to the di↵erence highlighted in Eq. (47):

P � P =� ↵
2

s
�0C1 � ↵

3

s


2�0C2 � �0C1 ⌦ C1 + �1C1 � 2⇣3�0�0

✓
P1 +

⇣
�1

2
�

2�0

3

⌘
· 1

◆�
+O(↵4

s
) (57)

Thus, the label “(TMD2)” signifies that the collinear PDF is evaluated in another TMD-scheme distinct from the
MS-scheme and the previously discussed TMD-scheme labeled “(TMD)”. As before, one can construct the finite
renormalization constant to pass from f

(TMD2) to the MS-scheme PDF. The expression obtained for this constant is

Z
MS/TMD2 = 1� ↵sC1 � ↵

2

s


C2 � C1 ⌦ C1 � ⇣3�0

✓
P1 +

⇣
�1

2
�

2�0

3

⌘
· 1

◆�
+O(↵3

s
), (58)

and the inverse factor reads

⇣
Z

MS/TMD2

⌘�1

= 1+ ↵sC1 + ↵
2

s


C2 � ⇣3�0

✓
P1 +

⇣
�1

2
�

2�0
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This conclusion aligns with the findings of the authors in Ref. [42], where the agreement of f (TMD2)(x, µ) with the
collinear PDF was demonstrated numerically.

Notice that also in this case our result stands for the unpolarized TMD, helicity TMD, and transversity TMD.

C. Phenomenological examples

To illustrate the application of our formulas and to verify their accuracy numerically, we consider a specific example
of TMD extraction from experimental data, namely the ART23 determination of unpolarized TMD [22]. ART23
analysis [22] was performed at N4LL accuracy (with N3LO matching to collinear PDF) via the global QCD fit of
Drell-Yan and electro-weak boson production data. The extraction has been done for optimal TMDs, and thus we
use the formulas from Section VA.

In Figure 1 we plot Z
MS/TMD

⌦ G0[f1](x, µ)/fMS(x, µ) � 1 at two values of µ = 10 and 20 GeV, considering LO,
NLO, and N2LO precision for Z. One can see that the agreement between the zeroth TMM and collinear PDFs
improves at higher values of the scale µ. Leading order expression gives already a very good agreement within 5%.
The agreement between reconstructed and original PDFs is approximately 5% at µ = 10 GeV (depending on x), and

about 2% at µ = 20 GeV. As higher-order corrections to Z
MS/TMD are applied, the precision improves significantly4.

With Z
MS/TMD taken at N2LO, the agreement is of order of 2-5% at µ = 10GeV, . 1% at µ = 20GeV, and at

sub-percent level for larger µ. We have verified that the central line (without convolution with Z
MS/TMD) agrees

with the results presented in Ref. [42]. In the region of large-x, the deviations become larger due to large ln(1 � x)
contributions. Potentially, the agreement can be improved using threshold resummation methods [88, 89].

4 For the application of ZMS/TMD we need the gluon TMD, which is not presently known. Instead, we used a pure OPE term with a
constant non-perturbative function.
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where ↵s ⌘ ↵s(µ) and we also define
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µ
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◆
. (55)

This equation does not exhibit the DGLAP structure and cannot be reduced to it through any finite factor, due to
`̀̀µ term which is present at LO. Additionally, this function depends on µTMD and ⇣, as encoded in Eqs. (17-18).

On the other hand, these issues can be avoided by setting scales as specified in Eq. (51). This choice of scales
significantly simplifies the logarithmic structure of the coe�cient function Eq. (52), and the evolution equation now
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Thus, the label “(TMD2)” signifies that the collinear PDF is evaluated in another TMD-scheme distinct from the
MS-scheme and the previously discussed TMD-scheme labeled “(TMD)”. As before, one can construct the finite
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This conclusion aligns with the findings of the authors in Ref. [42], where the agreement of f (TMD2)(x, µ) with the
collinear PDF was demonstrated numerically.

Notice that also in this case our result stands for the unpolarized TMD, helicity TMD, and transversity TMD.

C. Phenomenological examples

To illustrate the application of our formulas and to verify their accuracy numerically, we consider a specific example
of TMD extraction from experimental data, namely the ART23 determination of unpolarized TMD [22]. ART23
analysis [22] was performed at N4LL accuracy (with N3LO matching to collinear PDF) via the global QCD fit of
Drell-Yan and electro-weak boson production data. The extraction has been done for optimal TMDs, and thus we
use the formulas from Section VA.

In Figure 1 we plot Z
MS/TMD

⌦ G0[f1](x, µ)/fMS(x, µ) � 1 at two values of µ = 10 and 20 GeV, considering LO,
NLO, and N2LO precision for Z. One can see that the agreement between the zeroth TMM and collinear PDFs
improves at higher values of the scale µ. Leading order expression gives already a very good agreement within 5%.
The agreement between reconstructed and original PDFs is approximately 5% at µ = 10 GeV (depending on x), and

about 2% at µ = 20 GeV. As higher-order corrections to Z
MS/TMD are applied, the precision improves significantly4.

With Z
MS/TMD taken at N2LO, the agreement is of order of 2-5% at µ = 10GeV, . 1% at µ = 20GeV, and at

sub-percent level for larger µ. We have verified that the central line (without convolution with Z
MS/TMD) agrees

with the results presented in Ref. [42]. In the region of large-x, the deviations become larger due to large ln(1 � x)
contributions. Potentially, the agreement can be improved using threshold resummation methods [88, 89].

4 For the application of ZMS/TMD we need the gluon TMD, which is not presently known. Instead, we used a pure OPE term with a
constant non-perturbative function.
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FIG. 1. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (central values of ART23
extraction [22]), as a function of x at fixed µ = 10 (the upper row) and 20 GeV (the bottom row). The plots show the deviation
from the MS-value which was used in the fit of TMD (extraction MSHT20 [87]). Dashed orange lines, dotted blue lines, and

solid green lines correspond to LO, NLO, and N2LO order of factor ZMS/TMD.

Figure 2 shows ZMS/TMD
⌦ G0[f1](x, µ) at x = 0.1 as a function of µ and compares it to MSHT20 [87]. This figure

demonstrates that f (TMD) reproduces very well the evolution of collinear PDF. One can see that the agreement starts
from µ ⇠ 5 GeV. For lower values of the scale µ, the power corrections are substantial, and caution should be exercised
in the application of our formulas.

Lastly, Figure 3 illustrates that the uncertainty band of TMD reproduces the uncertainty band of collinear PDF.
This is a feature of the ART23 extraction, which incorporates PDF uncertainty into the TMD uncertainty band.
Figure 3 provides an important consistency test demonstrating that the input PDF is recovered completely with the
correct uncertainty band. Possibly one can consider this feature in a broader context of proposed joined fits of TMDs
and PDFs. TMM discussed in this paper can be utilized as an additional consistency check for the output of such a
fit for the mean values and for the uncertainty bands.

VI. THE FIRST TRANSVERSE MOMENTUM MOMENT

The first TMMs read:
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FIG. 2. Comparison of unpolarized PDF for u and d quarks determined from the unpolarized TMD (extraction ART23 [22]), as
a function of µ at fixed x = 0.1. The plot shows the deviation from the MS-value which was used in the fit of TMD (extraction

MSHT20 [87]). Di↵erent lines correspond to di↵erent orders of correction factor ZMS/TMD.

FIG. 3. Comparison of uncertainty bands for unpolarized PDF for u and d quarks as a function of x at fixed µ = 20 GeV.
The blue band is the uncertainty band determined from the uncertainty band of unpolarized TMD (extraction ART23 [22]).
The yellow band is the uncertainty band for unpolarized PDF (extraction MSHT20 [87]). Comparison is done with N2LO

ZMS/TMD.

The first TMMs are expressed via the transformation G1 ⌘ G1,1, Eqs. (34), and they are given by:

M
[�

+
]

µ
(x, µ) = �✏T,µ⌫s

⌫

T
MG1[f

?

1T
](x, µ), (61)

M
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+
�
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µ
(x, µ) = �sTµMG1[g

?

1T
](x, µ), (62)

M
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µ
(x, µ) = ��gT,µ↵MG1[h

?

1L
](x, µ)� ✏T,µ↵MG1[h

?

1
](x, µ). (63)

These quantities can be interpreted as the average displacement of the transverse momentum of a parton within a
polarized hadron [24, 46–48, 90, 91]. Their non-zero values are a consequence of the presence of the spin, whether it
be the spin of the proton or the parton. Notice that all functions in b-space have index (1), and the operation Gn,m

(34) is performed with n = m = 1. This corresponds to the first moment of TMDs in the momentum space from
Eq. (15).

The small-b expansion structure for these TMDs di↵ers from what was considered in Section V for f1, g1, and h1.
Schematically this OPE can be expressed as

eF (x, b) =
X

t

[ eCt(LO)⌦ t](x) +O(b2), (64)

where t represents collinear distributions of twist-two, -three, or -four, and ⌦ denotes an integral convolution in
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where f is the flavor index. As seen from Eq. (62), for a hadron polarized in the ŷ direction, we have ⌫ = 1. For the
extraction from [50], we obtain the following values at µ = 10 GeV

hku

T,1
i = �0.011+0.011

�0.023
GeV, hkd

T,1
i = 0.17+0.21

�0.17
GeV, hksea

T,1
i = �0.26+0.26

�0.32
GeV, (72)

where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d

T,1
i = �0.3 · · ·� 0.15 GeV.

The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as

X

f=q,q̄,g

Z
1

0

dxM
[�

+
]

⌫,f
(x, µ) =

X

f=q,q̄,g

hkf

T,⌫
i = 0. (73)

While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as

X

f=q,q̄,g

hkf

T,⌫
i = hkT,⌫i , (74)

then, intriguingly, the Burkardt sum rule exhibits autonomous evolution at LO [103]

µ
2

d

dµ2
hkT,⌫i = �

↵s

2⇡
CAhkT,⌫i+O(↵2

s
). (75)

Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is

X

f=q,q̄

hkf

T,1
i = hkT,1i � hkg

T,1
i = �0.14+0.14

�0.31
GeV. (76)

This allows us to estimate the contribution of the gluon Sivers function as hkg

T,1
i ' 0.14+0.31

�0.14
GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.

VII. THE SECOND TRANSVERSE MOMENTUM MOMENT

Now, we proceed to derive expressions for the second TMMs:
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By considering the operation defined in Eq. (32) with n ! n+ 1 and m ! n, we obtain

Gn+1,n[F ](x, µ) =

Z
µ

d
2kT

✓
k2
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F (x, kT ) (78)
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◆n (n+ 1)Jn+1(µb)� Jn+3(µb)
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eF (n)(x, b),

which, for the second moment, contributes solely with indices (1, 0), leading to
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where f is the flavor index. As seen from Eq. (62), for a hadron polarized in the ŷ direction, we have ⌫ = 1. For the
extraction from [50], we obtain the following values at µ = 10 GeV
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i = �0.011+0.011

�0.023
GeV, hkd

T,1
i = 0.17+0.21

�0.17
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where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d
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The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as
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While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as
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Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is
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This allows us to estimate the contribution of the gluon Sivers function as hkg
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GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.
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where f is the flavor index. As seen from Eq. (62), for a hadron polarized in the ŷ direction, we have ⌫ = 1. For the
extraction from [50], we obtain the following values at µ = 10 GeV
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�0.023
GeV, hkd

T,1
i = 0.17+0.21

�0.17
GeV, hksea

T,1
i = �0.26+0.26

�0.32
GeV, (72)

where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d

T,1
i = �0.3 · · ·� 0.15 GeV.

The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as
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While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as
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then, intriguingly, the Burkardt sum rule exhibits autonomous evolution at LO [103]
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Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is
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f=q,q̄

hkf

T,1
i = hkT,1i � hkg

T,1
i = �0.14+0.14
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This allows us to estimate the contribution of the gluon Sivers function as hkg

T,1
i ' 0.14+0.31

�0.14
GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.
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where f is the flavor index. As seen from Eq. (62), for a hadron polarized in the ŷ direction, we have ⌫ = 1. For the
extraction from [50], we obtain the following values at µ = 10 GeV
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T,1
i = 0.17+0.21
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GeV, hksea
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where the uncertainties are computed according to Ref. [50]. It is worth noting that the errors in these quantities are
correlated. These numbers are consistent with lattice QCD results from Ref. [100] that give the Sivers shift for u� d

quarks in the range of hku�d

T,1
i = �0.3 · · ·� 0.15 GeV.

The so-called Burkardt sum rule [47] conjectures that the sum over all hkT,1i is zero. [AP] This and other sum
rules for TMDs were studied in Ref. [29]. In our notations, this can be expressed as
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f=q,q̄,g

Z
1

0

dxM
[�

+
]

⌫,f
(x, µ) =

X

f=q,q̄,g

hkf

T,⌫
i = 0. (73)

While the Burkardt sum rule is not formally proven in QCD, it has been verified in model computations, as shown in
previous studies [101, 102]. If we define the following sum as

X

f=q,q̄,g

hkf

T,⌫
i = hkT,⌫i , (74)

then, intriguingly, the Burkardt sum rule exhibits autonomous evolution at LO [103]

µ
2

d

dµ2
hkT,⌫i = �

↵s

2⇡
CAhkT,⌫i+O(↵2

s
). (75)

Therefore, if hkT,⌫i is zero at the initial scale, it continues to be zero at other scales. For the specific case of the
extraction from Ref. [50], we find that, at µ = 10 GeV, the result for the sum over quark flavors is

X

f=q,q̄

hkf

T,1
i = hkT,1i � hkg

T,1
i = �0.14+0.14

�0.31
GeV. (76)

This allows us to estimate the contribution of the gluon Sivers function as hkg

T,1
i ' 0.14+0.31

�0.14
GeV, assuming the

validity of the Burkardt sum rule Eq. (74). Therefore based on Ref. [50], one could anticipate potentially sizable gluon
Sivers functions, comparable in magnitude to the Sivers function for the d-quark, even though the error band is large.

VII. THE SECOND TRANSVERSE MOMENTUM MOMENT

Now, we proceed to derive expressions for the second TMMs:

M
[�

+
]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[�
+
](x, kT ) =

Z
µ

d
2kTkTµkT⌫f1(x, kT ),

M
[�

+
�5]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[�
+
�
5
](x, kT ) = �

Z
µ

d
2kTkTµkT⌫g1(x, kT ), (77)

M
[i�

↵+
�
5
]

µ⌫
(x, µ) =

Z
µ

d
2kTkTµkT⌫F

[i�
↵+

�
5
](x, kT ) = s

↵

T

Z
µ

d
2kTkTµkT⌫h1(x, kT )

�

Z
µ

d
2kTkTµkT⌫

k2

T

M2

✓
g
↵⇢

T

2
+

k
↵

T
k
⇢

T

k2

T

◆
sT⇢h

?

1T
(x, kT ).

By considering the operation defined in Eq. (32) with n ! n+ 1 and m ! n, we obtain

Gn+1,n[F ](x, µ) =

Z
µ

d
2kT

✓
k2

T

2M2

◆n+1

F (x, kT ) (78)

=
1

2M2n!

Z
1

0

db µ
3

✓
µb

2

◆n (n+ 1)Jn+1(µb)� Jn+3(µb)

n+ 2
eF (n)(x, b),

which, for the second moment, contributes solely with indices (1, 0), leading to

potentially sizable gluon Sivers function
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