Transversity 2024
 Trieste, 3-7 June 2024

TMD EFFECTS IN UNPOLARISED PROCESSES

7th international workshop on transverse phenomena in hard processes

OVERVIEW

- Ingredients for phenomenology
- Recent extractions/pheno
- Some current challenges

INGREDIENTS FOR PHENOMENOLOGY

Some qт observables

$$
\sigma_{\mathrm{DY}} \sim\left[F_{i / a}, F_{i / b}\right]
$$

$$
\sigma_{\mathrm{SIA}} \sim\left[D_{a / i}, D_{b / i}\right]
$$

Same functions for different observables:
Universality, predictive power.

$$
\sigma_{\text {SIDIS }} \sim\left[F_{i / a}, D_{b / i}\right]
$$

Connect observables at different scales through evolution equations. Need Fourier transform to b_{T} space

$$
\begin{array}{ll}
\frac{\mathrm{d} \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} \mu, \zeta\right)}{\mathrm{d} \ln \mu}=\gamma\left(\alpha_{s}(\mu) ; \zeta / \mu^{2}\right) & \frac{\mathrm{d} \ln \tilde{D}\left(z, \boldsymbol{b}_{\mathrm{T}} \underline{\mu, \zeta)}\right.}{\mathrm{d} \ln \mu}=\gamma\left(\alpha_{s}(\mu) ; \zeta / \mu^{2}\right) \\
\frac{\partial \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) & \frac{\partial \ln \tilde{D}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{\sim}\left(b_{\mathrm{T}} ; \mu\right)
\end{array}
$$

$$
\frac{\mathrm{d} \tilde{K}\left(b_{\mathrm{T}} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right)
$$

Collins-Soper kernel:

- Highly universal
- nonperturbative at long distances
- extracted simultaneously with TMDs
- great progress in lattice QCD

Theoretical constraints in the small-b b_{T} limit: OPE

$$
\begin{array}{ll}
\tilde{f}_{i / a}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right) \sim C^{\mathrm{pdf}}\left(b_{\mathrm{T}} ; \mu, \zeta\right) \otimes f_{i / a}(\mu) \\
\tilde{D}_{a / i}\left(z, b_{\mathrm{T}} ; \mu, \zeta\right) \sim C^{\mathrm{ff}}\left(b_{\mathrm{T}} ; \mu, \zeta\right) \otimes d_{a / i}(\mu)(z) \quad \begin{array}{l}
\text { Collinear functions } \\
\text { extracted previously }
\end{array}
\end{array}
$$

C coefficients calculable in pQCD in this limit: perturbative $\mathrm{b}_{\mathrm{T}}\left(\mathbb{k}_{T}\right)$ effects.

$$
\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) \begin{aligned}
& \text { calculable in pQCD } \\
& \text { in this limit }
\end{aligned}
$$

Theoretical constraints in the small-b b_{T} limit: OPE

$$
\begin{array}{ll}
\tilde{f}_{i / a}^{\mathrm{pheno}}=\left[C^{\mathrm{pdf}} \otimes f_{i / a}\right]\left[\tilde{f}_{i / a}^{\mathrm{NP}}\right. & \\
\tilde{D}_{a / i}^{\text {pheno }}=\left[C^{\mathrm{ff}} \otimes d_{a / i}\right] \tilde{D}_{a / i}^{\mathrm{NP}} & \text { Models in bT } \\
\text { space }
\end{array}
$$

Most recent pheno on unpolarized TMDs has been carried out in two schemes:

- b* prescription (most used, e.g. MAP, JAM, BNLY, ...)
- ζ prescription (Madrid)

Modeling in k_{T} space + analogous constraints also possible See talk by Ted Rogers

RECENT EXTRACTIONS/PHENO

See talk by Ignazio Scimemi

$\Gamma_{\text {cusp }}$	γ_{V}	$\mathcal{D}_{\text {small-b }}$	$C_{f \leftarrow f^{\prime}}$	C_{V}	PDF
$a_{s}^{5}\left(\Gamma_{4}\right)$	$a_{s}^{4}\left(\gamma_{4}\right)$	$a_{s}^{4}\left(d^{(4,0)}\right)$	$a_{s}^{3}\left(C_{f \leftarrow f^{\prime}}\right)$	a_{s}^{4}	NNLO

JHEP 05 (2024) $036 \cdot$ e-Print: 2305.07473 [hep-ph]

Maximum available perturbative accuracy
Large amount of data
Wide kinematical range
PDF uncertainties

treatment can be computationally prohibitive

treatment can be computationally prohibitive experimental \& theory uncertainty (PDF) in the same footing?
(transversity 2022, Pia Zurita)

- JHEP 10 (2022) 118 [2201.07114].
treatment can be computationally prohibitive
experimental \& theory uncertainty (PDF) in the same footing?

More work on methods for error propagation would be useful
(transversity 2022 , Pia Zurita)

- JHEP 10 (2022) 118 [2201.07114].
treatment can be computationally prohibitive
experimental \& theory uncertainty (PDF) in the same footing?

More work on methods for error propagation would be useful (perhaps spy on other fields of physics or statisticians)

Not quite as many data

Pion TMDs interesting on their own right

Phys.Rev.D 107 (2023) 1, 014014 • e-Print: 2210.01733

Further studies on nuclear TMDs (how good are current treatments?)

Pion TMDs interesting on their own right

Further studies on nuclear TMDs (how good are current treatments?)

Phenomenological analyses find reasonable agreement to data in their fits.

MAP 2023

Experiments	$N_{\text {cut }}$	$\chi_{n}^{2} / N_{\text {cut }}$	$\chi_{\lambda}^{2} / N_{\text {cut }}$	$\chi_{n}^{2} / N_{\text {cut }}$
E537	64	1.00	0.57	1.57
E615	74	0.31	1.22	1.53
Total	138	0.63	0.92	1.55

Phys.Rev.D 107 (2023) 1, 014014 •e-Print: 2210.01733

Phys.Rev.D 108 (2023) 9, L091504 • e-Print: 2302.01192

Not quite as many data

MAP 2023

Experiments	$N_{\text {cut }}$	$\chi_{n}^{2} / N_{\text {cut }}$	$\chi_{\lambda}^{2} / N_{\text {cut }}$	$\chi_{n}^{2} / N_{\text {cut }}$
E537	64	1.00	0.57	1.57
F6615	74	0.31	1.22	1.53
Total	138	0.63	0.92	1.55

Phys.Rev.D 107 (2023) 1, 014014 • e-Print: 2210.01733
(Full blown) Predictions at COMPASS kinematics:
need to test the theory / factorization theorem /model / ...

Not quite as many data

JAM 2023

q_{T}-dep. πA DY	E615 [95]	21.8	1.45	1.85
$\pi W \rightarrow \mu^{+} \mu^{-} X$	E537 [96]	15.3	0.97	0.03

Phys.Rev.D 108 (2023) 9, L091504 • e-Print: 2302.01192

Not quite as many data

(do we) can we have predictions for COMPASS as well?

JAM 2023

q_{T}-dep. πA DY	E615 [95]	21.8	1.45	1.85
$\pi W \rightarrow \mu^{+} \mu^{-} X$	E537 [96]	15.3	0.97	0.03

Phys.Rev.D 108 (2023) 9, L091504 • e-Print: 2302.01192

Most recent global fits on DY (like) + SIDIS

MAP 2024

- pdf uncertainty - large amount of data
- high perturbative accuracy
- a lot of information from SIDIS (low scale)

Most recent global fits on DY (like) + SIDIS

MAP 2024

- pdf uncertainty
- large amount of data
- high perturbative accuracy
- a lot of information from SIDIS (low scale)

MAPTMD24: new approach

Solution: we need flavor dependence to obtain a good agreement between theory and experiments

- a lot of information from SIDIS (low scale)

Normalization: some issues with SIDIS fits, see for instance:

JOGH, PoS DIS2019 (2019) 176

Old fit at O(alpha_s)
Decent fit
Need to introduce spurious normalizations

Red means N ~ 2.0

MAP 2024

- large amount of data
- high perturbative accuracy
- a lot of information from SIDIS (low scale)

Normalise predictions such that integral over $P_{h T}$ gives $d \sigma / d x d Q d z$:

$$
M\left(x, z, P_{h T}, Q\right)=\mathcal{N} \frac{\frac{d \sigma}{d x d Q d z d P_{h T}}}{\frac{d \sigma}{d x d Q}} \quad \mathcal{N}=\frac{\frac{d \sigma}{d x d Q d z}}{\int d P_{h T} \frac{d \sigma}{d x d Q d z d P_{h T}}}
$$

Theoretically justified normalisation and not fitted.
(Valerio Bertone, Transversity 2022)

Even in most recent fits by MAP
Theory motivated fix (high pQCD accuracy) this issue persist

$$
\begin{aligned}
& \text { Normalization: some issues with } 23 \\
& \text { SIDIS fits }
\end{aligned}
$$

Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

JHEP 06 (2020) 137 • e-Print: 1912.06532 [hep-ph]

Ignazio Scimemi ${ }^{1}$ Alexey Vladimirov ${ }^{2}$

Contrary to some observations in the literature [14, 18], we have not found any problem with the normalization of HERMES and COMPASS data, although the systematic experimental errors quit precision to the final result.
[18] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081, [1703.10157].

Do we agree on this issue?

Normalization: some issues with
 SIDIS fits

Brainstorming:

- There is no issue

Normalization: some issues with SIDIS fits

Brainstorming:

- There is no issue
- Errors of factorization are too large
- Next-to-leading power formalisms:

Theorist have been very active on this front. (Pheno?)

A few more examples, not comprehensive

Transverse momentum dependent operator expansion at next-to-leading power Alexey Vlacimirov (Regensburg U.), Valentin Moos (Regensburg U.), Ignazio Scimemi (Macrid U.) (Sep 20, 2021)

Published in: JHEP 01 (2022) 110 • e-Print: 2109.09771 [hep-ph]

Transverse momentum dependent factorization for SIDIS at next-to-leading power Sirnone Rodini (Ecole Polytechnique, CPHT), Alexey Vladimirov (Madrid U.) (Jun 15, 2023) e-Print: 2306.09495 [hep-ph]

TMD distributions @ next-to-leading power

Simone Rodini
Alexey Vladimirov

Based on 2204.03856

Universität Regensburg

(Simone Rodini , Transversity 2022)
Normalization: some issues with SIDIS fits

Brainstorming:

- There is no issue
- Errors of factorization are too large
- We are missing something about the fragmentation functions

New insights from theory. (pheno?)

Definition of fragmentation functions and the violation of sum rules

See talk by A. Vossen

No data available

Other related

- theory+pheno of processes?

$$
\mathbf{e}^{+} \mathbf{e}^{-}->\text {h X }
$$

- missing full treatment
of thrust
- Same CS kernel
- Different TMD ff (related to SIDIS)

No data available Other related processes?

- theory+pheno of

Full treatment of thrust
Boglione, Simonelli
JHEP 09 (2023) 006 • e-Print: 2306.02937
JHEP 02 (2022) 013 • e-Print: 2109.11497 $\mathbf{e}^{+} \mathbf{e}^{->}$h X

- missing full treatment of thrust
- Same CS kernel
- Different TMD ff (related to SIDIS)
(Andrea Simonelli, Transversity 2022)

See talk by Andrea Simonelli

```
JHEP 02 (2022) 013 • e-Print: 2109.11497
```


No data available

Other related processes?

Full treatment of thrust
Boglione, Simonelli
JHEP 09 (2023) 006 • e-Print: 2306.02937
JHEP 02 (2022) 013 • e-Print: 2109.11497

See talk by Andrea Simonelli

- theory+pheno of $\mathbf{e}^{+} \mathbf{e}^{-}-\mathbf{h}$ X

Other relevant work (not comprehensive)

Modarres,
Taghavi

Makris, et.al. JHEP 02 (2021) 070 •e-Print: 2009.1187
Kang, et.al. JHEP 12 (2020) 127 • e-Print: 2007.14425

Some proof-of-concept pheno lowest order (just starting)

E288

-Use theoretical constraints, don't trust the fit will do this job by itself.
-Check/improve constraints
-Prioritize the role of lower scale data (more information about intrinsic kT)
-Emphasize the role of predictive aspect of factorization theorems
(JOGH, QCD evolution 2024)

SOME CURRENT CHALLENGES

Normalization issue (?) in SIDIS TMD region

$$
\mathrm{q} \mathrm{~T} \ll \mathrm{Q}
$$

We can only fit
small qT data

Normalization issue (?) in SIDIS TMD region

$$
\mathrm{q} \mathrm{~T} \ll \mathrm{Q}
$$

We can only fit
small qT data

Large qT , collinear factorization (no TMDs)

$$
\mathrm{q} \top \sim \mathrm{Q}
$$

We should predict
with existing
collinear functions
(no further fitting)

Is this scale too low to trust factorization?

Normalization issue (?) in SIDIS TMD region

$$
\mathrm{q} \mathrm{~T} \ll \mathrm{Q}
$$

We can only fit small qT data

Large qT, collinear factorization (no TMDs)

$$
\mathrm{q} \top \sim \mathrm{Q}
$$

We should predict with existing collinear functions (no further fitting)

Is this scale too low to trust factorization?

recall we DY fits start at about these scales

Normalization issue (?) in SIDIS TMD region

$$
\mathrm{q} \mathrm{~T} \ll \mathrm{Q}
$$

We can only fit small qT data
$\mathbf{Q \sim 4} \mathbf{~ G e V} \quad q_{\mathrm{T}}>Q$

Large qT , collinear factorization (no TMDs)

$$
\mathrm{q} \mathrm{~T} \sim \mathrm{Q}
$$

We should predict with existing collinear functions (no further fitting)

Is this scale too low to trust factorization?
recall we DY fits start at about these scales

NO Normalization issue in DY TMD region

$$
\mathrm{q} \mathrm{~T} \ll \mathrm{Q}
$$

Q ~ 6.5 GeV

Phys.Rev.D 100 (2019) 1, $014018 \cdot$ e-Print: 1901.06916

Large qT , collinear factorization (no TMDs)

$$
\mathrm{q} \mathrm{~T} \sim \mathrm{Q}
$$

> Can't describe DY "tails" very well either

The case for an EIC Theory Alliance: Theoretical Challenges of the EIC

- Theoretical and phenomenological exploration of QCD factorization theorems and expanding the region of their applicability, for instance by inclusion of power corrections in q_{T} / Q. A crucial ingredient will be matching collinear factorization ($\Lambda_{\mathrm{QCD}} \ll q_{T} \sim Q$) and TMD factorization ($\Lambda_{\mathrm{QCD}} \lesssim q_{T} \ll Q$) in the overlap region $\Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q$ in a stable and efficient way. Such a matching is needed for our ability to describe the measured quantities, differential in transverse momentum, in the widest possible region of phase space. In turn, this will lead to a much more reliable understanding of both collinear and TMD related functions and uncertainties in their determinations.
e-Print: 2305.14572

The case for an EIC Theory Alliance: Theoretical Challenges of the EIC

- Theoretical and phenomenological exploration of QCD factorization theorems and expanding the region of their applicability, for instance by inclusion of power corrections in q_{T} / Q. A crucial ingredient will be matching collinear factorization $\left(\Lambda_{\mathrm{QCD}} \ll q_{T} \sim Q\right)$ and TMD factorization ($\Lambda_{\mathrm{QCD}} \lesssim q_{T} \ll Q$) in the overlap region $\Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q$ in a stable and efficient way. Such a matching is needed for our ability to describe the measured quantities, differential in transverse momentum, in the widest possible region of phase space. In turn, this will lead to a much more reliable understanding of both collinear and TMD related functions and uncertainties in their determinations.
e-Print: 2305.14572

> Fancy talk to say
> "interpolate these two"

TMD region $\mathrm{q} \mathrm{T} \ll \mathrm{Q}$

a.k.a. "Matching"

Large qT, collinear factorization (no TMDs)
qT ~ Q

Need consistency
conditions
between cross section in the two limits

Need consistency conditions

between cross section in the two limits

$$
\tilde{f}_{i / a}^{\mathrm{pheno}}=\left[C^{\mathrm{pdf}} \otimes f_{i / a}\right] \tilde{f}_{i / a}^{\mathrm{NP}}
$$

$$
\tilde{D}_{a / i}^{\text {pheno }}=\left[C^{\mathrm{ff}} \otimes d_{a / i}\right] \tilde{D}_{a / i}^{\mathrm{NP}}
$$

Some progress in this direction: HSO approach
Phys.Rev.D 107 (2023) 9, 094029 • e-Print: 2303.04921

Impose conditions on
 nonperturbative models

See talk by Ted Rogers
(Done in momentum space)

Need consistency conditions

between cross section in the two limits

$$
\tilde{f}_{i / a}^{\text {pheno }}=\left[C^{\mathrm{pdf}} \otimes f_{i / a}\right] \tilde{f}_{i / a}^{\mathrm{NP}}
$$

$$
\tilde{D}_{a / i}^{\text {pheno }}=\left[C^{\mathrm{ff}} \otimes d_{a / i}\right] \tilde{D}_{a / i}^{\mathrm{NP}}
$$

Unconstrained models

Constrained models

Quark TMDs more easily accessible

Can't forget the "glue that binds us all"

No picture will be complete without gluon TMDs

See talk by
Daniël Boer

(PERSONAL)CONCLUSIONS

- Big progress on the extraction of TMDs from data: high accuracy in pQCD, flavor dependence, theoretical errors, pions!
- Important theory developments (pheno?)
- Some current challenges remain: large $q T$ tails on data, normalization issue in SIDIS (did we agree?)
- Nice to see predictions

Thanks

