

Round Table Open issues in the extraction of transversity

U. D'Alesio A. Bacchetta, C. Flore, G. Schnell

Different methods

TMD approach

 $\propto h_1(x,k_\perp) \otimes H_1^\perp(z,P_\perp)$

- Collins effect in SIDIS
- TMD approach plus twist-three approach : also A_N in pp
- TMD approach plus GPM/CGI approach : also A_N in pp

Collinear approach

- dihadron FFs in SIDIS and pp

$$\propto h_1(x) H_1^{\triangleleft}(z, R_T^2)$$

Both cases: extra chiral-odd unknown

Soffer bound

use/misuse of the Soffer bound (a priori / a posteriori)

Soffer Bound [J. soffer, PRL74 (1995) 1292–1294]

$$|h_1^q(x, Q^2)| \le \frac{1}{2} \left[f_{q/p}(x, Q^2) + g_{1L}^q(x, Q^2) \right]$$

- down-quark helicity distribution is negative: stronger bound (apparently *less* problematic)
- Unpol and helicity PDFs poorly known at very large *x*...large uncertainties in the bound
- Bias in the exploration of the parameter space

Tensor charge

 $\hfill\square$ Tensor charge and isovector combination

$$\delta q = \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx \qquad g_T = \delta u - \delta d$$

- large x involved
- Sea quark contribution

 \Box Pheno estimates: SIDIS data up to x=0.3, A_N in pp up to x=0.7

Lattice calculations:

- use/ impact
- tension with phenomenological extractions

Phenomenological extractions

Talk by D. Pitonyak

Tensor charges: pheno. extractions

Tensor charges: pheno vs. lattice

Talk by D. Pitonyak

Statistical issues

Uncertainties beyond statistics

- parametrizations
- unpolarised FFs & diFFs, Collins FFs

Different statistical approaches:

- replica method vs. MC approach
- chi2's
- correlations
- Estimates of statistical uncertainties

Use of data

Role of kinematical cuts imposed to select SIDIS data in the fitting procedure: target vs current fragmentation region

data binning

- □ Large-*x* region in SIDIS
- $\Box pp \rightarrow \pi X$
- isolated vs non-isolated pions
- Charged pion data