New Measurements of

Transverse Spin Asymmetries in SIDIS At COMPASS

Athira Vijayakumar On behalf of the COMPASS collaboration

Transversity 2024 Trieste, 3-7 June 2024

National Science Foundation

Common Muon and Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment located at the M2 beam line of CERN SPS
- High energy muon and hadron beams enabling a wide physics program, from spectroscopy to nucleon structure
- First physics data taken in 2002
- Last physics data in 2022
- The COMPASS spectrometer is being used by the AMBER collaboration - talk by Oleg Denisov

Common Muon and Proton Apparatus for Structure and Spectroscopy

- Iongitudinally polarized targets: Iongitudinal spin structure of the nucleon
- transversely polarized targets: transversity and TMDs my talk
- unpolarized targets: TMDs talk by Andrea Bressan
- GPDs talk by Nicole d'Hose High energy pion beam

Athira Vijayakumar | UIUC

NUCLEON STRUCTURE WITH COMPASS

High energy muon beam

polarized and unpolarized targets: TMDs in DY process talk by Catarina Quintans

- Two stages: to accommodate for the high beam intensity and offers large acceptance
 - Large Angle Spectrometer (SM1),
 - Small Angle Spectrometer (SM2)
- equipped with
 - tracking detectors (SciFi, GEMs and Micromegas, MWPCs, Drift Detectors)
 - RICH, muon walls,
 - calorimeters, trigger hodoscopes

(Polarised) Target

 (μ) beam

COMPASS Spectrometer

COMPASS Polarized Target

- Large aperture superconducting magnet offer large angular acceptance 180 mrad since 2006 (70 mrad in 2002 2004)
- Three oppositely polarized target cells (30 + 60 + 30 cm)
- DNP method for polarization
- Deuteron (⁶LiD) in 2022 achieved ~40% polarization with dilution factor $f \sim 0.4$
- Proton (NH₃) achieved ~80-90% polarization with dilution factor $f \sim 0.15$

Transverse Structure of the Nucleon

The nucleon's quark structure at leading twist with intrinsic quark transverse momentum described using eight TMD PDFs.

Accessing TMD PDFs

Semi Inclusive Deep Inelastic Scattering

CoM Energy:

Photon virtuality:

Inelasticity:

Invariant mass of the hadronic final state: $W^2 = (P + q)^2$

Bjorken *x*:

virtual photon's energy fraction carried by hadron:

$$z = \frac{P \cdot P_h}{P \cdot q}$$

Single hadron SIDIS cross-section

The total differential cross-section of SIDIS can be expressed as;

 $d\sigma = d\sigma_{UU} + \lambda_l d\sigma_{LU} + S_L (d\sigma_{UL} + \lambda_l d\sigma_{LL}) + S_T (d\sigma_{UT} + \lambda_l d\sigma_{LT})$

Athira Vijayakumar | UIUC

Transversity 2024, Trieste

At leading order:

Ref. JHEP 02 (2007) 093 for details on convolution (\otimes) including kinematic pre-factors

Experimentally, for a given target configuration, we obtain the yield as a function of the angles :

$$N(\Phi_S) \propto 1 + A_{Siv} \cdot P_t \cdot f \sin \Phi_S$$
$$N(\Phi_C) \propto 1 + A_{Col} \cdot P_t \cdot f \cdot D_{NN} \sin \Phi_C$$

$$Q^2 > 1 (\text{GeV/c})^2$$

 $W^2 > 25 (\text{GeV/c}^2)^2$
 $0.1 < y < 0.9$
 $z > 0.2$
 $P_T > 0.1 (\text{GeV/c})$

Athira Vijayakumar | UIUC

Transversity 2024, Trieste

160 GeV muon beam on:

T polarized deuteron target : 2002 - 2004 T polarized proton target : 2007, 2010 T polarized **deuteron** target : 2022 **NEW**!

Athira Vijayakumar | UIUC

COMPASS SIDIS Legacy

COMPASS SIDIS Legacy

Collins asymmetries from deuteron target (2002 - 2004 data):

9) 127-135

- Asymmetries compatible with zero
- Hinting at cancellation of *u* and *d* quark transversity contributions
- The only existing deuteron results until 2022
- But with large statistical uncertainties at large x

Collins asymmetries from proton target (2007, 2010):

Athira Vijayakumar | UIUC

COMPASS SIDIS Legacy

- Distinct signal in the valence region
- Similar magnitude but opposite sign for h+ and h-
- Agrees with 2005 HERMES results despite different beam energies

Towards accessing Transversity PDF

From SIDIS and e⁺ e⁻ annihilation data:

Suggests opposite signs for *u* and *d* quark transversity PDFs d quark transversity PDF determination limited by statistics of neutron/deuteron data

Motivation for COMPASS deuteron run 2022!

Athira Vijayakumar | UIUC

refer talk by Franco Bradamante

Transversity 2024, Trieste

Towards accessing Sivers PDF

from HERMES, COMPASS and JLab

Anselmino et al., JHEP 04 (2017) 46

Suggests opposite signs for *u* and *d* quark Sivers PDFs *d* quark Sivers PDF determination limited by statistics of neutron/deuteron data

Motivation for COMPASS deuteron run 2022!

COMPASS Deuteron Run 2022!

- To complete the COMPASS physics program on transverse spin effects in SIDIS
- Muon on deuteron (⁶LiD) SIDIS with similar conditions as 2010 proton run
- Aim to improve the statistical uncertainties in d quark distributions
- Improvement in statistical uncertainties expected with one year of data taking :

First results from 2022 data: Sivers and Collins TSAs, dihadron TSAs

Athira Vijayakumar | UIUC

Addendum to COMPASS I

- $\sigma_{2022}^d \approx 0.6 \sigma_{2010}^p$
- Uncertainties on the asymmetries are in line with the expectation

Sivers and Collins Asymmetries from 2022 data

NEW. arXiv:2401.00309 To appear in PRL

- Largely improved precision by a factor of 3
- Sivers asymmetries are compatible with zero
- Collins asymmetries show opposite trend for positive and negative hadrons at large x similar to the proton results

Comparison with COMPASS previous deuteron results

Collins asymmetries

Athira Vijayakumar | UIUC

arXiv:2401.00309 To appear in PRL

- Improved precision in the new data
- Statistical uncertainties reduced by a factor of 3 \bullet
- Hints for signal at large x, similar to results from proton

Comparison with COMPASS proton results

Collins asymmetries

Athira Vijayakumar | UIUC

EW. arXiv:2401.00309 To appear in PRL

- Small deuteron asymmetries due to cancellation of *u* and *d* quark contributions
- Deuteron asymmetries follow similar trend as the proton at large x
- Comparable statistical uncertainties

Comparison with COMPASS previous deuteron results

Sivers asymmetries

Athira Vijayakumar | UIUC

arXiv:2401.00309 To appear in PRL

- Improved precision in the new data
- Statistical uncertainties reduced by a factor of 3
- Compatible with zero

Comparison with COMPASS proton results

Sivers asymmetries

Athira Vijayakumar | UIUC

N. arXiv:2401.00309 To appear in PRL

- Deuteron results for are compatible with ~zero as expected.
- Comparable statistical uncertainties between deuteron and proton results
- Cancellation of *u* and *d* quark distributions

Extraction of Transversity PDFs

Xiv:2401.00309 To appear in PRL

Athira Vijayakumar | UIUC

Point to point extraction of h_1 was performed A. Martin et al, Phys. Rev. D 91, 014034 (2015)

Using COMPASS SIDIS (p and d) and Belle e^+e^- data

- Opposite signs for *u* and *d* quarks
 - Improved statistical uncertainties including new data.
 - Almost a factor of 4 improvement in large x
- Smaller error bars for both *u* and *d* quarks distributions

Extraction of Nucleon Tensor Charge

✓ For the *u* quark, new and old values are consistent;

- 30% reduction in statistical uncertainty
- \checkmark For the *d* quark, the new values are a factor of about 2.5 smaller;
 - a factor of two reduction in stat. uncertainty
- \checkmark The truncated nucleon tensor charge g_T is now about 20% smaller;
 - a factor of two reduction in stat. uncertainty

:2	24()1.00309
ır	in	PRL

*		
$^{0}\mathrm{d}xh_{1}^{u_{\nu}}(x)$	$\delta d = \int_{0.008}^{0.210} \mathrm{d}x h_1^{d_v}(x)$	$g_{\rm T} = \delta u - \delta d$
± 0.030	-0.178 ± 0.097	0.365 ± 0.078
± 0.020	-0.070 ± 0.043	0.284 ± 0.045

Extraction of Sivers PDFs

Athira Vijayakumar | UIUC

A. Martin et al, Phys. Rev. D 91, 014034

Similar procedure implemented for extraction of the Sivers function $f_{1T}^{\perp(1)}$

Opposite signs for *u* and *d* quarks distributions

- For the *d* quark, the statistical uncertainties are reduced by about a factor of two
 - The different x dependence for u and d quarks is now quite clear.

Dihadron Asymmetries and IFF

Athira Vijayakumar | UIUC

Cross-section of semi-inclusive dihadron leptoproduction

on a transversely polarized target :

$$\begin{aligned} \frac{d^{7} \sigma_{UU}}{M_{h^{+}h^{-}}^{2} d\phi_{R} dz dx dy d\phi_{S}} &= \frac{\alpha^{2}}{2\pi Q^{2} y} \left(1 - y + \frac{y^{2}}{2}\right) \\ &\times \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1,q}(z, M_{h^{+}h^{-}}^{2}, \cos\theta), \\ \frac{d^{7} \sigma_{UT}}{M_{h^{+}h^{-}}^{2} d\phi_{R} dz dx dy d\phi_{S}} &= \frac{\alpha^{2}}{2\pi Q^{2} y} S_{\perp} (1 - y) \\ &\times \sum_{q} e_{q}^{2} \frac{|\mathbf{p}_{1} - \mathbf{p}_{2}|}{2M_{h^{+}h^{-}}} \sin\theta \sin\phi_{RS} h_{1}^{q}(x) H_{1,q}^{\triangleleft}(z, M_{h^{+}}^{2}) \end{aligned}$$

Dihadron asymmetries from proton and deuteron targets :

2007 & 2010 proton data

Athira Vijayakumar | UIUC

COMPASS SIDIS Legacy

For deuteron target:

- No significant asymmetries observed For proton target:
- Signal in valence region indicate non-vanishing transversity PDF and interference FF
- Asymmetry is very close to and somewhat larger than the Collins asymmetry for positive hadrons
 - same mechanism behind 1h and 2h transverse spin dependent FFs

Dihadron Asymmetries from 2022 data

Comparison with previous deuteron results

- data, up to a factor of 4 at large x
- Suggests signal in large x region

• Improved statistical uncertainties with the new

Comparison with previous deuteron results Comparison with previous **proton** results

- Improved statistical uncertainties with the new data

Athira Vijayakumar | UIUC

• Similar trend in large x region between proton and deuteron

Summary

- New high-statistics COMPASS results for the TSAs with deuteron target. • Improved statistical uncertainties are as expected • The 2022 deuteron data will stay unique for several years at least until the
- JLab and EIC results are available
- COMPASS has made yet another important contribution to the study of the nucleon structure.
- Many new analyses to come in the near future

Athira Vijayakumar | UIUC

BACKUP

Transversity 2024, Trieste

Interplay between Collins and Dihadron asymmetries

