

STAR Results on Transversity and TMD-Related Observables

Bassam Aboona, on behalf of the STAR Collaboration

(he/him/his)

bem4r@physics.tamu.edu

June 3rd -7th, 2024

Supported in part by:

Bassam Aboona – STAR Transversity and TMD Studies

Outline

- Introduction
- Sivers Effect
- Transversity and the Collins Effect
- Selected Future Work
- Summary

RHIC: Relativistic Heavy Ion Collider

- The only machine in the world capable of colliding high-energy beams of polarized protons
- The beams travel in opposite directions around RHIC's 3.86 km two-lane racetrack
- Offers a wide range of center-of-mass energies (up to 510 GeV)

STAR: Solenoidal Tracker At RHIC

Transverse Single-Spin Asymmetries (TSSA's) - A_N

- Since the 1970's, surprisingly, large TSSA's have been observed at forward rapidities in $p^{\uparrow} + p$ collisions
- Perturbative Quantum
 Chromodynamics (pQCD) predicts
 very small values for A_N
- Twist-3 and transverse momentum dependent (TMD) theoretical frameworks have been developed to describe this observed large TSSA

Plot reference: Elke Aschenauer et al., arXiv:1602.03922. 06/03/24 Bassam Aboona – STAR Transversity and TMD Studies

Sivers Effect: A Mechanism for A_N

- k_T : parton transverse momentum
- *S*_p: proton spin
- **P**: proton momentum

- $f_{1T}^{\perp}(x, k_T, Q^2)$: Describes the relationship between the transverse momentum distribution of unpolarized partons and the transverse spin polarization of the proton [1].
- Characterizes a scalar triple-vector correlation for an unpolarized parton and its polarized parent proton.
- Correlation between partonic orbital motion and proton's spin

[1] D. Sivers, Phys. Rev. D **41**, 83 (1990).

Probing The Sivers Effect Using Dijet Production

- A transversely polarized proton going in the longitudinal direction can have partons with a spin-dependent transverse momentum k_T
- The k_T provides a kick to the dijet and makes it fold in the direction of the transverse momentum

Probing The Sivers Effect Using Dijet Production

- A transversely polarized proton going in the longitudinal direction can have partons with a spin-dependent transverse momentum k_T
- The k_T provides a kick to the dijet and makes it fold in the direction of the transverse momentum

8/31

Mean k_T Flavor Dependence

STAR, arXiv:2305.10359

For the first time, there is evidence of non-zero Sivers effect using dijets.

- Jet charge tagging combined with unfolding used to determine the quark flavor.
- Tagged $\langle k_T \rangle$ represents a mixture of partons
- Obtaining parton fractions from simulation allows for measuring the individual parton $\langle k_T \rangle$

Results:

- d-quark $\langle k_T \rangle \approx -2 u$ -quark $\langle k_T \rangle$
- The $\langle k_T \rangle$ for gluon and sea quarks combined is consistent with zero

W^{\pm} Boson Reconstruction and A_N

- Left and right asymmetry of the W^{\pm} production with respect to the spin of the polarized proton
- Sensitive to the Sivers TMD function $Q^2 = M_W^2 \sim 6500 \text{ GeV}^2$
- A_N is measured via azimuthal angle $A_N \cdot \cos(\phi) = \frac{1}{\langle P \rangle} \cdot \frac{\sqrt{N_{\uparrow}(\phi)N_{\downarrow}(\phi + \pi)} - \sqrt{N_{\uparrow}(\phi + \pi)N_{\downarrow}(\phi)}}{\sqrt{N_{\uparrow}(\phi)N_{\downarrow}(\phi + \pi)} + \sqrt{N_{\uparrow}(\phi + \pi)N_{\downarrow}(\phi)}}$

 $\langle P \rangle$:Mean beam polarization $N_{\uparrow}(N_{\downarrow})$:Yield in spin up (down) state ϕ :Azimuthal angle

Use TPC tracks and EMC hits to measure W^{\pm} recoil from collision:

$$\vec{p}_{T,W} = \vec{p}_{T,e} + \vec{p}_{T,\nu} = -\vec{p}_{T,recoil}$$
$$\vec{p}_{T,recoil} = \sum \left(\vec{p}_{T,TPC} + \vec{E}_{T,EMC}\right)$$

A_N Preliminary Results of W^{\pm}

- Results are generally consistent with the model predictions
- STAR results will have biggest impact on high-*x* region of the quark Sivers function

Z^0/γ^* Cross Section

STAR, Phys. Lett. B 854 (2024) 138715

• Z^0 events are reconstructed via:

$$p + p \rightarrow Z^0 \rightarrow e^+ + e^-$$

- Serves as a test of the universality of unpolarized TMDs
- Provides insights into the x and Q^2 evolution of unpolarized TMDs
 - RHIC energies provide access to higher *x* compared to the Tevatron and LHC

STAR, Phys. Lett. B 854 (2024) 138715

- $p_T^{Z^0}$ is limited to < 10 GeV/*c* to stay within the kinematic region where the polarized TMD approach is applicable
- This result will allow for the extraction of the Sivers TMD PDF, and especially for valence quarks in the region $x \ge 0.1$
- Unable to provide a conclusive statement regarding the sign-change hypothesis of the Sivers function

Siver $s_{\text{DIS}} = -\text{Siver}s_{\text{DY}} \text{ or Sivers}_{W^{\pm},Z^{0}}$

06/03/24

Collins Effect: A Mechanism for A_N

π^{\pm} Collins Asymmetry at $\sqrt{s} = 200$ GeV

- Integrated over a wide range of z and j_T to provide sensitivity to the collinear transversity, $h_1^a(x, Q^2)$
- The hadron j_T and zbinning allows sensitivity to the Collins FF, $H_{1\pi/c}^{\perp}(z_{\pi}, j_T, Q^2)$
- In general, model calculations underestimate experimental data

π^{\pm} Collins Asymmetry at $\sqrt{s} = 200$ and 510 GeV

- Results from the two beam energies match each other very well
- Little, if any, energy dependence when comparing the 200 GeV results to the 510 GeV results
 - Q² values differ by a factor of 6 between 200 GeV and 510 GeV results
- Sets constrains on evolution effects

π^{\pm} Collins Asymmetry at $\sqrt{s} = 200$ and 510 GeV

z: longitudinal momentum fraction of the pion

 j_T : transverse momentum of the pion with respect to the jet axis

- z and j_T binning allows sensitivity to the Collins FF, $H_{1\pi/c}^{\perp}(z_{\pi}, j_T, Q^2)$
- Good agreement between the 200 and 510 GeV results
- Little to no energy dependence

Di-pion Asymmetries and Cross-Section Measurements

b) First measurement of unpolarized $\pi^+\pi^-$ cross section at 200 GeV

(a) + (b) \rightarrow model independent extraction of $h_1^q(x)$

Learn more from Bernd Surrow's talk, "STAR IFF Measurements," during the Thursday morning session.

 $M_{inv}^{\pi^+\pi^-}$ (GeV/c²)

Λ and $\overline{\Lambda}$ Hyperon Transverse Spin Transfer - D_{TT}

Theory: Q. H. Xu et al., Phys. Rev. D, 73(7), 077503 (2006).

• D_{TT} is consistent with zero

Relevant Event Classes

Relevant Event Classes

Rapidity Gap (RG) Event:

Vetoing hadrons in the BBC η range suppresses a large fraction of the non-diffractive events – RG events are highly enriched in diffractive processes

East BBC: $-5 < \eta < -2$

Relevant Event Classes

Forward Rapidity: A_N for Inclusive EM-Jets

- EM-jets are reconstructed using only photons
- Photon candidates are obtained from the Forward Meson
 Spectrometer (FMS) on the west side of STAR

- Three different photon multiplicity scenarios are considered
 - Multiplicity dependence is observed
- EM-jets with only 1 or 2 photons have the largest A_N
 - Could this point to a contribution to the observed A_N from diffractive processes?

Diffractive Process and A_N

- $p + p \rightarrow \text{EM-jet} + X$ $p + p \rightarrow \text{EM-jet} + X$
- Inclusive EM-jet RG events (at least 50% of RG events are single diffractive)

$p + p \rightarrow p + \text{EM-jet} + X$ Single diffractive process

- A_N consistent within uncertainties for all three processes
- If A_N has significant contributions from diffractive processes, then A_N from diffractive events is expected to have a large magnitude
- Current results do not provide evidence in favor of a diffractive process having a large contribution to A_N

Mid-Rapidity: Inclusive Jet Asymmetry at 200 and 510 GeV

- At low p_T, the inclusive jet asymmetry is sensitive to the twist-3 correlators associated with the gluon Sivers function
- 510 GeV results extend the measurement to lower values of *x*
- Results are consistent with zero within uncertainties

Mid-Rapidity: Pion Tagged Jet Asymmetry at 200 and 510 GeV

STAR, Phys. Rev. D 106, 072010 (2022)

Outlook

Si Detectors

sTGC

ECal

STAR Forward Upgrade:

- Installed and commissioned before 2022
- $2.5 < \eta < 4$
- Charged particle tracking using Si detectors and small-strip Thin Gap Chambers (sTGC)
- Electromagnetic and hadronic calorimetry
- <u>Capable of measuring:</u>
 - h^{\pm}, e^{\pm} (with good e/h discrimination) Photons, π^{0}
 - Jets, hadrons in jets
 - Lambda's
 - Drell-Yan and J/ψ di-electrons
 - Mid-forward and forward-forward correlations
- Quarks up to $x \sim 0.5$ and gluons down to $x \sim 0.001$

HCal

Outlook

- The mid + forward rapidity capabilities of STAR complement the future EIC kinematic coverage
- The forward upgrade will bridge the kinematic region between mid-rapidity STAR and SIDIS
 - great for future Collins measurements

Outlook

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with z > 0.5
- Up to 10 σ separation between plus-tagged and minus-tagged jet A_N

Summary

- Spin-dependent $\langle k_T \rangle$ from dijet production and A_N from W^{\pm}/Z^0 studies at STAR provide probes for the Sivers effect
- The Z^0 cross section gives insights into the evolution of the unpolarized TMDs
- The Collins effect is studied at two energy levels and show little to no energy dependence
- Di-pion asymmetries and cross-section results from STAR can provide the initial steps to modelindependent transversity extractions
- $\Lambda(\overline{\Lambda}) D_{TT}$ is sensitive to the (anti-)strange quark transversity in the proton
- EM-jet A_N results at forward rapidity for single diffractive processes show no large contribution for the observed large TSSA in the forward direction
- The Forward Upgrade extends the kinematic range of the measurements at STAR, which are essential for universality studies at the future EIC

Backup

Probing The Sivers Effect Using Dijet Production

- φ_b : dijet bisector angle
- $\zeta > \pi \operatorname{if} \cos(\varphi_b) > 0$
- $\zeta < \pi \operatorname{if} \cos(\varphi_b) < 0$

- The signed opening angle, ζ, is sensitive to the spin-dependent partonic k_T involved in characterizing the Sivers effect.
- A Conversion from the spin-dependent ζ asymmetries ($\Delta \zeta$) to Sivers $\langle k_T \rangle$ can be achieved

$$\Delta \zeta = \frac{\langle \zeta \rangle^+ - \langle \zeta \rangle^-}{P}$$

 $\langle \zeta \rangle^{\pm}$: the centroid of the distribution for spin-up/spin-down proton beams

P: magnitude of beam polarization

Tagged $\Delta \zeta$ and $\langle k_T \rangle$ From Tagged Dijet Production

Asymmetry shifts from positive to negative when going from + to - tagging \rightarrow strong evidence that Sivers $\langle k_T \rangle$ in u and d are opposite

Collins Asymmetry vs. z from 510 GeV

Collins Asymmetry from 510 GeV vs. Theory

Theory curves:

- KPRY: Z.-B. Kang, A. Prokudin, F. Ringer, and F. Yuan, Phys. Lett. B **774**, 635 (2017), arXiv:1707.00913
- DMP+2013: U. D'Alesio, F. Murgia, and C. Pisano, Phys. Lett. B 773, 300 (2017), arXiv:1707.00914

- The 2011 and 2017 experimental results for A_{UT} agree with each other
- Overall, the theoretical models underestimate the experimental results

Detailed Future Work

- EM-Jet A_N :
 - Data from Run 2022 and 2024 using the Forward Upgrade will improve precision of measurement
- Dijet Sivers:
 - Combining existing results with data from 2017 and 2022 at 510 and 508 GeV, respectively, to explore the *x*-dependence of the measurement
- W^{\pm} and $Z^0 A_N$:
 - STAR recorded 400 pb^{-1} during Run 2022 utilizing the Forward Upgrade detectors
 - iTPC extends the η coverage
- Collins Asymmetries:
 - Use polarized p + Au data from 2015 to measure the Collins asymmetry
 - Use 2022 and 2024 data with the Forward Upgrade for Collins measurements in the forward direction
- Di-pion Asymmetries:
 - Use data from Run 2022 and 2024 to perform a precision measurement of IFF asymmetries of pion and kaons