Nucleon Transversity from lattice QCD

Constantia Alexandrou

EXCELLENCE/0421/0043

European Joint Doctorate, grant agreement No. 101072344

Outline

***Introduction**

- State-of-the-art lattice QCD simulations
- *** 3D structure of the nucleon**
 - First and second Mellin moments
 - Charges & from factors
 - ➡Transverse densities, Phys.Rev.D 107 (2023) 5, 054504
 - Direct computation of parton distributions (PDFs and GPDs)

***Conclusions**

Quantum ChromoDynamics (QCD)

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_f \left(i\gamma^{\mu} D_{\mu} - m_f \right) \psi_f$$

*****Unique properties:

Fritzsch, Gell-Mann and Leutwyler, Phys. Lett. 47B (1973) 365

- ★ Confinement
- ★Asymptotic freedom
- \bigstar Mass generation via interaction

Lattice QCD provides an *ab initio* method to study a wide class of strong interaction phenomena

* Lattice QCD uses directly \mathcal{L}_{QCD} or the action $S_{QCD} = \int d^4x \, \mathcal{L}_{QCD}$

Simulations of lattice QCD

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{O}(D_f^{-1}[U], U) \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

1. Simulation of gauge ensembles $\{U\}$:

$$P[U] = \frac{1}{Z} \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

ETMC: S. Bacchio, J. Finkenrath, R. Frezzotti, B. Kostrzewa, C. Urbach

Simulations of lattice QCD

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{O}(D_f^{-1}[U], U) \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

1. Simulation of gauge ensembles $\{U\}$:

$$P[U] = \frac{1}{Z} \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

2. Quark propagators: inverse of Dirac matrix $D_f[U]$: Multi-grid solvers

Gauge ensembles generated by ETMC

C. A. et al. (ETMC) Phys. Rev. D98 (2018) 054518

ded Twisten

ETMC: S. Bacchio, J. Finkenrath, R. Frezzotti, B. Kostrzewa, C. Urbach

Gauge ensembles generated by ETMC

C. A. et al. (ETMC) Phys. Rev. D98 (2018) 054518

ded Twiste

Results in this talk from the analysis of 3 physical mass point ensembles

- B-ensemble: 64³ x 128, a~0.08 fm
- C-ensemble: 80³x160, a~0.07 fm
- D-ensemble:96³x192, a~0.06 fm

3D structure of hadrons

*The 3D-structure of the nucleon is a major part of on-going experiments and of the future EIC

*Lattice QCD can contribute towards this goal - many recent developments to compute Mellin moments but also directly parton distributions

EIC white paper, arXiv:1212.1701

Wigner distributions

Longitudinal momentum

 $k^+ = xP^+$

PDF

 $\rho(x, k_T, b_T)$

5-D correlations

Transverse momentum

PDpartons

TMD

Transverse position

Computation of Mellin moments of GPDs

- * Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- * Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that can be computed in lattice QCD q(x)

$$\mathcal{O}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{\Delta q(x) = q^{-} - q^{+}} \left[\tilde{\mathcal{O}}^{\mu_{1}\dots\mu_{n}}_{T} = \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{helicity} \langle x^{n}\rangle_{\Delta q} = \int_{0}^{1} dx \, x^{n} \left[\Delta q(x) + (-1)^{n}\Delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\rho\mu_{1}\dots\mu_{n}}_{T} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{h_{1}(x,\mu^{2})} \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\rho\mu_{1}\dots\mu_{n}}_{T} = q_{\perp} + q_{\uparrow}, \quad \Delta q = q_{\downarrow} - q_{\uparrow}, \quad \delta q = q_{\intercal} + q_{\downarrow}$$

direction of motion

Twist-2 PDFs

Ph. Hagler, Phys. Rept. 490 (2010) 49

Computation of Mellin moments of GPDs

- Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that q(x)can be computed in lattice QCD $\mathcal{O}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}\}}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})}_{g_{1}(x,\mu^{2})} \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\rightarrow}} \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})}_{g_{1}(x,\mu^{2})} \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\rightarrow}} \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})}_{g_{1}(x,\mu^{2})} \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\rightarrow}} \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})}_{g_{1}(x,\mu^{2})} \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})} \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_{1}(x,\mu^{2})} \xrightarrow{f_{1}(x,\mu^{2})} \underbrace{f_$ $\tilde{\mathcal{O}}^{\mu_1\dots\mu_n} = \bar{\psi}\gamma_5\gamma^{\{\mu_1}iD^{\mu_2}\dots iD^{\mu_n\}}\psi \qquad \stackrel{helicity}{\to} \qquad \langle x^n \rangle_{\Delta q} = \int_0^1 dx \, x^n \left[\Delta q(x) + (-1)^n \Delta \bar{q}(x)\right]$ $\delta q(x) = q_\perp + q_\perp$ $\mathcal{O}_{T}^{\rho\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}}iD^{\mu_{2}}...iD^{\mu_{n}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1}dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta \bar{q}(x)\right]_{\substack{h_{1}(\mathbf{x},\mu^{2}) \in \mathbf{1}}}$ $q = q_{\downarrow} + q_{\uparrow}, \quad \Delta q = q_{\downarrow} - q_{\uparrow}, \quad \delta q = q_{\intercal} + q_{\perp}$ direction of motion * For off-diagonal matrix elements we obtain moments of GPDs or the generalised form factors (GFFs) **Twist-2 PDFs**

e.g unpolarized

$$\int_{-1}^{1} dx \, x^{n-1} H(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} A_{ni}(\tau) + \operatorname{mod}(n,2) (2\xi)^{n} C_{n0}(\tau) \right]$$
Ph. Hagler, Phys. Rept. 490 (2010) 49

$$\int_{-1}^{1} dx \, x^{n-1} E(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} B_{ni}(\tau) - \operatorname{mod}(n,2) (2\xi)^{n} C_{n0}(\tau) \right]$$

 J_{-1}

Computation of Mellin moments of GPDs

- * Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that can be computed in lattice QCD $f_{1}(x, u^{2})$

$$\mathcal{O}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x,\mu^{2})} \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\leftarrow}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{helicity} \langle x^{n}\rangle_{\Delta q} = \int_{0}^{1} dx \, x^{n} \left[\Delta q(x) + (-1)^{n}\Delta\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x) = q^{\rightarrow} - q^{\leftarrow}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x) = q_{\perp} + q_{\perp}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x) = q_{\perp} + q_{\perp}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x) = q_{\perp} + q_{\perp}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\mathbf{q}(x) = q_{\perp} + q_{\perp}} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}\psi \xrightarrow{transversity} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transversity} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{1}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transversity} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{1}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transversity} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}}iD^{\mu_{1}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transversity} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\mu_{1}}iD^{\mu_{1}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transversit} \left(\sum_{q=1}^{\infty} \bar{\psi}\gamma_{5}\gamma^{\mu_{1}}iD^{\mu_{1}}\dots iD^{\mu_{n}}\varphi \xrightarrow{transvers$$

* For off-diagonal matrix elements we obtain moments of GPDs or the generalised form factors (GFFs) e.g unpolarized c_1 n-1

$$\int_{-1}^{1} dx \, x^{n-1} H(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} A_{ni}(\tau) + \operatorname{mod}(n,2)(2\xi)^{n} C_{n0}(\tau) \right]$$

Ph. Hagler, Phys. Rept. 490 (2010) 49
$$\int_{-1}^{1} dx \, x^{n-1} E(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} B_{ni}(\tau) - \operatorname{mod}(n,2)(2\xi)^{n} C_{n0}(\tau) \right]$$

Special cases: n=1,2 for the nucleon

• n=1: $\tau=0$ —> charges gV, gA, gT $\tau \neq 0$ —> form factors: $A_{10}(\tau) = F_1(\tau)$, $B_{10}(\tau) = F_2(\tau)$, $\tilde{A}_{10}(\tau) = G_A(\tau)$, $\tilde{B}_{10}(\tau) = G_p(\tau)$ • n=2: generalised form factors: $A_{20}(\tau)$, $B_{20}(\tau)$, $C_{20}(\tau)$, $\tilde{A}_{20}(\tau)$, $\tilde{B}_{20}(\tau)$ $\langle r \rangle = A_{22}(0) - \langle r \rangle_{\Lambda} = \tilde{A}_{22}(0) - \langle r \rangle_{\Lambda} = A^T(0)$ and $L = \frac{1}{2}[A_{22}(0) + B_{22}(0)] = \frac{1}{2}\Delta\Sigma + L$

$$\langle x \rangle_q = A_{20}(0), \quad \langle x \rangle_{\Delta q} = \tilde{A}_{20}(0), \quad \langle x \rangle_{\delta q} = A_{20}^T(0) \text{ and } J_q = \frac{1}{2}[A_{20}(0) + B_{20}(0)] = \frac{1}{2}\Delta\Sigma_q + L_q$$

* Spin and momentum sums: $\sum_{q} \left[\frac{1}{2}\Delta\Sigma_{q} + L_{q}\right] + J_{g} = \frac{1}{2}, \quad \sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = 1$

direction of motion

Twist-2 PDFs

Mellin moments - precision era of lattice QCD

First Mellin moments

- Moments for small n are readily accessible on the lattice from matrix elements of local operators
- Computation of the low Mellin moments has a long history, G. Martinelli and Ch. Sachradja Phys. Lett. B217 (1989) 319
- Only recently we have results directly at the physical point (i.e. simulations with $m_{\pi} \sim 135 + /-10 \text{ MeV}$)

Nucleon isovector charges

Determine for each quark flavour

e.g.
$$\Delta \Sigma_{q^+} = g_A^q$$

 $\Delta \Sigma_{q_+}(\mu^2) = \int_0^1 dx \left[\Delta q(x,\mu^2) + \Delta \bar{q}(x,\mu^2) \right] = g_A^q$

Axial charges

• Axial charges extracted directly from the forward matrix element

Isoscalar including disconnected

- Non-zero strangeness, upper limit on charmness of 0.013
- With our two additional lattice spacings we expect more stability in the results and reduced errors at the continuum limit

Nucleon isovector (u-d) axial charge

Lattice QCD results on g_A consistent with experimental value

Nucleon isovector (u-d) tensor charge

*****Only connected contributions

Flavor diagonal tensor charge

Precision era of lattice QCD for first Mellin moments including flavor diagonal

Flavor diagonal tensor charge

*Precision results on the isovector tensor charge - input for phenomenology e.g. JAM3D-22 analysis

L. Gamberg et al. (JAM) Phys.Rev.D 106 (2022) 3, 034014, arXiv:2205.00999

Axial form factors

***** Dipole and z-expansion fits, various ranges \rightarrow model average using AIC

C.A., S. Bacchio, M. Constantinou, J. Finkenrath, R. Frezzotti, B. Kostrzewa, G. Koutsou, G. Spanoudes, C. Urbach, arXiv:2309.05774

T. Cai *et al.*, Nature 614, 48 (2023)

*Agreement between our results and those of Mainz

D. Djukanovic et al. PRD 106, 074503 (2022), arXiv: 2207.03440

Second Mellin moments

***** Quark unpolarised moment: $\mathcal{O}^{\mu\nu,f} = \bar{\psi}_f \gamma^{\{\mu} i \stackrel{\leftrightarrow}{D}{}^{\nu\}} \psi_f$

*****Gluon unpolarised moment: $\mathcal{O}^{\mu\nu,g} = F^{\{\mu\rho}F^{\nu\}}_{\rho}$ Field strength tensor

*Matrix elements of helicity and transversity one derivative operators yield: $\langle x \rangle_{\Delta q_f}$, $\langle x \rangle_{\delta q_f}$

Transversity moments

*****First Mellin moment of transversity GPD

$$\langle N(p',s') | \bar{\psi}_f \sigma^{\mu\nu} \psi_f | N(p,s) \rangle = \bar{u}_N(p',s') \left[\sigma^{\mu\nu} A^f_{T10}(q^2) + i \frac{\gamma^{[\mu} q^{\nu]}}{2m_N} B^f_{T10}(q^2) + \frac{P^{[\mu} q^{\nu]}}{m_N^2} \widetilde{A}^f_{T10}(q^2) \right] u_N(p,s)$$

*****Second Mellin moment of transversity GPD: $\mathcal{O}_T^{\mu\nu\rho,f} = \bar{\psi}_f \sigma^{[\mu\{\nu]} \overleftarrow{D}^{\rho\}} \psi_f$

$$\langle N(p',s') | \mathcal{O}_{T}^{\mu\nu\rho,f} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{T20}^{f}(q^{2}) \, i\sigma^{[\mu\{\nu]}P^{\rho\}} + \tilde{A}_{T20}^{f}(q^{2}) \, \frac{P^{[\mu}q^{\{\nu]}P^{\rho\}}}{m_{N}^{2}} + B_{T20}^{f}(q^{2}) \, \frac{\gamma^{[\mu}q^{\{\nu]}P^{\rho\}}}{m_{N}} + \tilde{B}_{T20}^{f}(q^{2}) \, \frac{\gamma^{[\mu}P^{\{\nu]}q^{\rho\}}}{m_{N}} \Big] u_{N}(p,s)$$

$$\langle x \rangle_{\delta q_{f}} = A_{T20}^{f}(0)$$

$$A_{Tn0}(q^2) = \int_{-1}^{1} dx \, x^{n-1} H_T(x, 0, q^2),$$

$$B_{Tn0}(q^2) = \int_{-1}^{1} dx \, x^{n-1} E_T(x, 0, q^2),$$

$$\widetilde{A}_{Tn0}(q^2) = \int_{-1}^{1} dx \, x^{n-1} \widetilde{H}_T(x, 0, q^2),$$

$$\widetilde{B}_{Tn0}(q^2) = \int_{-1}^{1} dx \, x^{n-1} \widetilde{E}_T(x, 0, q^2),$$

M. Diehl and Ph. Hägler, Eur. Phys. J. C 44, 87 (2005), hep-ph/0504175.

Transversity GPDs can be written in terms of the combination: $E_T + 2\tilde{H}_T$

Continuum limit of isovector generalised form factors

*****Continuum extrapolate in a^2

*****All results are in the $\overline{\mathrm{MS}}$ scheme at 2 GeV

*****The u-d anomalous tensor magnetic moment

$$\kappa_T = \bar{B}_{T10}(0) = 1.051(94)$$
$$E'_T + 2H'_T \leftrightarrow -h_1^{\perp}$$

—> non-zero Boer-Mulders function ***** Momentum fraction

$$\langle x \rangle_{u-d} = A_{20}(0) = 0.126(32)$$

***** u-d total angular momentum

$$J_{u-d} = [A_{20}(0) + B_{20}(0)] = 0.156(46)$$

- * Second transversity moment $\langle x \rangle_{\delta u - \delta d} = A_{T20}(0) = 0.168(44)$
- ***** Second transversity moment of

$$\widetilde{B}_{T20}(0) = 0.267(19)$$

Its value not known in phenomenology

Continuum limit of generalised form factors

C.A. et al (ETMC) Phys.Rev.D 107 (2023) 5, 054504, arXiv: 2202.09871

Spin densities in the transverse plane

M. Diehl and Ph. Haggler, Eur. Phys. J. C 44, 87 (2005), hep-ph/0504175.

* Examine transversity at zero skewness in impact parameter space

*Compute isovector generalised form factors and Fourier transform to impact parameter space

$$\boldsymbol{\phi}(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) = \frac{1}{2} \left[H(x, b_{\perp}^2) + \frac{\mathbf{b}_{\perp}^{i} \epsilon^{ji}}{m_N} \left(\mathbf{S}_{\perp}^{i} E'(x, b_{\perp}^2) + \mathbf{s}_{\perp}^{i} \bar{E}'_T(x, b_{\perp}^2) \right) + \mathbf{s}_{\perp}^{i} \mathbf{S}_{\perp}^{i} \left(H_T(x, b_{\perp}^2) - \frac{\Delta_{b_{\perp}} \tilde{H}_T(x, b_{\perp}^2)}{4m_N^2} \right) + \mathbf{s}_{\perp}^{i} (2\mathbf{b}_{\perp}^{i} \mathbf{b}_{\perp}^{j} - \delta^{ij} b_{\perp}^2) \mathbf{S}_{\perp}^{j} \frac{\tilde{H}''_T(x, b_{\perp}^2)}{m_N^2} \right]$$

x : longitudinal momentum fraction

$$F' \equiv \frac{\partial}{\partial b_{\perp}^2} F, \ \Delta_{b_{\perp}} F \equiv 4 \frac{\partial}{\partial b_{\perp}^2} (b_{\perp}^2 \frac{\partial}{\partial b_{\perp}^2}) F$$

- \mathbf{s}_{\perp} : transverse quark spin
- \mathbf{S}_{\perp} : transverse nucleon spin
- \mathbf{b}_{\perp} : transverse impact parameter

***** Take moments

$$\langle x^{n-1} \rangle_{\rho}(\mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp}) \equiv \int_{-1}^{1} dx \ x^{n-1} \rho(x, \mathbf{b}_{\perp}, \mathbf{s}_{\perp}, \mathbf{S}_{\perp})$$

Transverse density distribution for n=1

***** Contours of the probability density for the **first moment** as a function of b_x and b_y

★ Qualitative behavior similar to that found in M. Diehl and Ph. Hägler, Eur. Phys. J. C 44, 87 (2005), hep-ph/0504175

C.A. et al. (ETMC, Phys. Rev. D 107 (2023) 5, 054504, arXiv: 2202.09871

Transverse density distribution n=2

***** Contours of the probability density for the **second moment** as a function of b_x and b_y

Distortion is milder than for n=1 due to the milder dependence of $A_{20}(t)$ compared to $A_{10}(t)$

New era of direct computation of x-dependencne of parton distributions

Large momentum effective theory(LaMET)

• PDFs light-cone correlation matrix elements - cannot be computed on a Euclidean lattice

$$F_{\Gamma}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle N(p) | \bar{\psi}(-z/2) \Gamma W(-z/2, z/2) \psi(z/2) | N(p) \rangle |_{z^{+}=0, \vec{z}=0}$$

 Define spatial correlators e.g. along z³ and boost nucleon state to large momentum —> quasi PDFs (have same IR behaviour)

- Match to the infinite momentum frame using the matching kernel computed in perturbation theory (possible due to asymptotic freedom of QCD)
- Allow momentum transfer —> generalised parton distributions

 $z^0 = t$

Z

 Z^+

 z^3

Direct computation of PDFs

• Compute space-like matrix elements for boosted nucleon states and take the large boost limit

$$\tilde{F}_{\Gamma}(x, P_3, \mu) = 2P_3 \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \langle P_3 | \overline{\psi}(0) \Gamma W(0, z) \psi(z) | P_3 / \mu$$
 Renormalise non-perturbatively, $\mathcal{Z}_{(z,\mu)}$ Need to eliminate both UV and exponential divergences

Match using LaMET $\tilde{f}^{1} du (x, \mu)$ Perturbative kernel (Λ^{2}_{OCD})

•

$$\tilde{F}_{\Gamma}(x,P^{z},\mu) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{yP^{z}}\right) F_{\Gamma}(y,\mu) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP^{z})^{2}},\frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P^{z})^{2}}\right)$$

X. Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539

Transversity PDF

*****Isovector transversely at physical pion mass and a=0.093 fm in the \overline{MS} scheme at 2 GeV

C.A. et al. (ETMC) Phys. Rev. D 98 (2018) 091503(R), arXiv:1807.00232

Transversity PDFs

***** Lattice Parton Collaboration (LPC) analysed ensembles with 4 lattice spacings a={0.098, 0.085,0.064,0.049} fm , pion masses ranging from 220 to 350 and momentum boosts up to 2.8 GeV

*****Renormalization is done using a hybrid scheme separating the short and long distances

*Continuum, chiral extrapolations and large momentum limit are done simultaneously

F. Yao et al. (LPC) Phys. Rev. Lett. 131 (2023) 26, 261901, 2208.08008

Isoscalar and strange PDFs

Two studies on disconnected with heavier than physical pion mass:

• Mixed action - clover valence on staggered sea, m_{π} =310 and m_{π} =690 MeV, only strange

R. Zhang, H.W. Lin, B. Yoon (2020), 2005.011

• Twisted mass fermions

$32^3 \times 64$	a=0.0938(3)(2) fm	$m_N = 1.050(8) \mathrm{GeV}$
L = 3.0 fm	$m_{\pi} \approx 260 \text{ MeV}$	$m_{\pi}L \approx 4.0$

C. A., M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Manigrasso (2020), 2009.13061

Helicity distributions

$32^3 \times 64$	a=0.0938(3)(2) fm	$m_N = 1.050(8) \text{ GeV}$
L = 3.0 fm	$m_{\pi} \approx 260 \mathrm{MeV}$	$m_{\pi}L \approx 4.0$

C. A., M. Constantinou, K. Jansen, F. Manigrasso, Phys. Rev. Lett. 126 (2021) 10, 102003, arXiv:2009.1306
C.A., G. Iannelli, K. Jansen, F. Manigrasso, Phys. Rev. D 102 (2020) 9, 094508, arXiv:2007.13800

Helicity & transversity GPDs

C. A. *et al.* (ETMC) Phys. Rev. Lett. 125 (2020) 262001,2008.10573 C.A. *et al.*(ETMC), Phys.Rev.D 105 (2022) 3, 034501, 2108.10789

New developments of expressing GPDs in terms of Lorentz invariant amplitudes allows easier access to a range of momentum transfers in lattice QCD calculations

S. Bhattacharya et al. Phys. Rev. D 106 (2022) 114512, 2209.05373 for unpolarized S. Bhattacharya et al. Phys. Rev. D 109 (2024) 034508, 2310.13114 for helicity

Towards TMD PDFs in lattice QCD

X. Ji, et al. Phys. Rev. D 99 (2019) 114006, 1801.05930

***** Quasi-TMDs formulated in the LaMET approach

M. A. Ebert, I. W. Stewart, Y. Zhao, Phys.Rev.D 99 (2019) 3, 034505, 1811.00026; JHEP 09 (2019) 037, 1901.03685; JHEP 03 (2020) 099,1910.08569

First results obtained for the unpolarised nucleon TMD PDF by the Lattice Parton Collaboration (LPC)

X. Ji et al. (LPC) 2211.02340

$$f^{\mathrm{TMD}}(x,\vec{b}_T,\mu,\zeta) = H(\frac{\zeta_z}{\mu^2}) e^{-\ln\left(\frac{\zeta_z}{\zeta}\right)K(b_T,\mu)} \tilde{f}(x,\vec{b}_T,\mu,\zeta_z) \sqrt{S_r(b_T,\mu)} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{\zeta_z},\frac{M^2}{(P^z)^2},\frac{1}{b_T^2\zeta_z}\right)$$

perturbative matching kernel Collins-Soper kernel, which is nonperturbative for $q_T \sim 1/b_T \sim \Lambda_{QCD}$

Rapidity independent reduced soft function

*Quasi-TMD PDF is given as
$$\tilde{f}^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta_z) = \int \frac{dz}{2\pi} e^{-iz\zeta_z} \frac{P^z}{E_{\vec{P}}} B_{\Gamma}(z, \vec{b}_T, \mu, P^z)$$

Renormalised beam function obtained from the bare

$$\tilde{B}_{0,\Gamma}(z,\vec{b}_T,L,P^z;1/a) = \langle N(P^z)|\bar{\psi}(z/2,\vec{0}_T)\Gamma\mathcal{W}(z,\vec{b}_T,L\hat{z})q(-z/2,\vec{b}_T)|N(P^z)\rangle$$

$$\mathcal{W}(z, \vec{b}_T, L\hat{z}) = \begin{array}{c} z/2 \\ \psi \\ -z/2 \end{array} \begin{array}{c} z/2 \\ L_z \end{array} b_T \end{array}$$

37

Nucleon unpolarised isovector TMD PDF

***** LPC published the first results modelling the momentum dependence and taking the chiral and continuum limits
Jin-Chen He et al. (LPC) arXiv:2211.02340

#ETMC has preliminary results at one lattice spacing (0.093 fm) and heavier than physical pion mass (350 MeV), renormalised with the ratio scheme

Conclusions

- *** Precision era of lattice QCD**: Moments of PFDs can be extracted precisely we can extract a lot of interesting physics and also reconstruct the PDFs
- ***** Results on isovector and gluon PDFs using simulations with physical pion mass using various approaches (quasi-distributions, pseudo-distributions, current-current correlates, etc)
- *****Calculations of GPDs using a suitable for lattice frame and extraction of Lorentz invariant amplitudes
- ***** The calculation of sea quark contributions is feasible providing valuable input e.g. the strange helicity
- ***** Exploratory studies of TMDs
 - ✦ Way forward: continuum limit, larger boosts, volume effects