Transversity 2024 Trieste, 3-7 June 2024

7th international workshop on transverse phenomena in hard processes

Marco Radici

Transversity: Theory / Phenomenology Overview

Outline

Transversity overview:

- properties
- ways to extract it from exp. data
- current knowledge
- tensor charge: comparison with lattice
- new data available
- future data and related impact

In 30 min., overview far from exhaustive...

The quark TMD "zoo" at leading twist

The quark TMD "zoo" at leading twist

		Quark polarization						
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)				
on	U	$f_1 = \mathbf{\bullet}$	×	$h_1^\perp = (\uparrow)$ - (\downarrow)				
Nucleon Polarizatio	L	×	$g_1 = \bullet - \bullet$	$h_{1L}^{\perp} = \bigcirc - \bigcirc$				
	т	$f_{1T}^{\perp} = \overset{\bullet}{\bullet}$ - \bullet	$g_{1T} = \stackrel{\bullet}{\longleftarrow} - \stackrel{\bullet}{\longleftarrow}$	$h_1 = \textcircled{1}$ - $\textcircled{1}$				
		Ŭ ¥		$h_{1T}^{\perp} = \bigodot^{\bullet} - \checkmark$				

T-odd

The quark TMD "zoo" at leading twist

		Quark polarization						
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)				
on	U	$f_1 = \mathbf{\bullet}$	×	$h_1^\perp = (\uparrow)$ - (\blacktriangleright)				
Nucleon Polarizatio	L	×	$g_1 = -$	$h_{1L}^{\perp} = {} - \swarrow}$				
	т	$f_{1T}^{\perp} = \overset{\bullet}{\bullet} - \overset{\bullet}{\bullet}$	$g_{1T} = \stackrel{\bullet}{\frown} - \stackrel{\bullet}{\frown}$	$h_1 = \textcircled{1}$ - $\textcircled{1}$				
				$h_{1T}^{\perp} = \bigodot - \bigodot$				

chiral-odd

Integrating kT : the collinear quark PDFs

		Quark polarization							
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)					
on	U	$f_1 = oldsymbol{eta}$							
Polarizati	L		$g_1 = -$						
Nucleon	т			$h_1 = \textcircled{1}$ - $\textcircled{1}$					

Integrating kT : the collinear quark PDFs

 $\delta^{q}(Q^{2}) = \int_{0}^{1} dx \, h_{1}^{q-\bar{q}}(x, Q^{2})$

Electron-Ion Collider

- the only chiral-odd structure that survives in collinear kinematics
- only way to determine the tensor charge

both defined in Infinite Mom. Frame

helicity

transversity

Bacchetta, Mulders, 2000

helicity

transversity

charges connected to hadronic matrix elements of local operators (calculable on lattice)

 $\langle P, S_L | \bar{q} \gamma^{\mu} \gamma_5 q | P, S_L \rangle = S_L P^{\mu} g_A^q$

axial current <=> axial charge = $S_L P^{\mu} \int_0^1 dx g_1^{q+\bar{q}}(x, Q^2)$

connected to C-even structure

 $\langle P,S \,|\, \bar{q}\, \sigma^{\mu\nu}\, q \,|\, P,S \rangle = P^{\left[\mu\, S^{\nu}\right]} \,\delta^q(Q^2)$

tensor current <=> tensor charge = $P^{[\mu} S^{\nu]} \int_0^1 dx h_1^{q-\bar{q}}(x, Q^2)$

connected to C-odd structure

helicity

transversity

charges connected to hadronic matrix elements of local operators (calculable on lattice)

 $\langle P, S_L | \bar{q} \gamma^{\mu} \gamma_5 q | P, S_L \rangle = S_L P^{\mu} g_A^q$ axial current <=> axial charge $= S_L P^{\mu} \int_0^1 dx g_1^{q+\bar{q}}(x, Q^2)$ connected to C-even structure anomalous dim. $\Delta \gamma^{(1)} = 0$ $=> g_A^q \text{ is constant}$ $\langle P, S | \bar{q} \sigma^{\mu\nu} q | P, S \rangle = P^{[\mu} S^{\nu]} \delta^q(Q^2)$ tensor current <=> tensor charge $= P^{[\mu} S^{\nu]} \int_0^1 dx h_1^{q-\bar{q}}(x, Q^2)$ connected to C-odd structure anomalous dim. $\delta \gamma^{(1)} = -C_F/2$ $=> \delta^q \text{ scales with } Q^2$

charges connected to hadronic matrix elements of local operators (calculable on lattice)

 $\langle P, S_L | \bar{q} \gamma^{\mu} \gamma_5 q | P, S_L \rangle = S_L P^{\mu} g_A^q$ axial current <=> axial charge $= S_L P^{\mu} \int_0^1 dx g_1^{q+\bar{q}}(x, Q^2)$ tensor current <=> tensor charge $= P^{[\mu} S^{\nu]} \int_0^1 dx h_1^{q-\bar{q}}(x, Q^2)$ connected to C-even structure anomalous dim. $\Delta \gamma^{(1)} = 0$ $=> g_A^q \text{ is constant}$ $\langle P, S | \bar{q} \sigma^{\mu\nu} q | P, S \rangle = P^{[\mu} S^{\nu]} \delta^q(Q^2)$ tensor current <=> tensor charge $= P^{[\mu} S^{\nu]} \int_0^1 dx h_1^{q-\bar{q}}(x, Q^2)$ connected to C-odd structure anomalous dim. $\delta \gamma^{(1)} = -C_F/2$ $=> \delta^q \text{ scales with } Q^2$

helicity and transversity are very different !

Potential for BSM discovery ?

Tensor (and chiral-odd) structures do not appear in the Standard Model Lagrangian at tree level.

Is it a possible low-energy footprint of BSM physics at higher scale ?

Potential for BSM discovery ?

Tensor (and chiral-odd) structures do not appear in the Standard Model Lagrangian at tree level.

Is it a possible low-energy footprint of BSM physics at higher scale ?

 M_W^2

 $M_{\rm BSM}^2$

Potential for BSM discovery ?

Tensor (and chiral-odd) structures do not appear in the Standard Model Lagrangian at tree level.

Is it a possible low-energy footprint of BSM physics at higher scale ?

<u>SMEFT with strong CP violation</u> permanent Electric Dipole Mom.

$$\mathcal{L}_{\text{SMEFT}} \rightarrow \sum_{f=u,d,s,c} d_f \bar{\psi}_f \sigma_{\mu\nu} \gamma_5 \psi_f F^{\mu\nu} ?$$

neutron EDM $d_n = \frac{\delta u}{\delta u} d_u + \frac{\delta d}{\delta d_d} + \frac{\delta s}{\delta s} d_s + \dots$

exp. data + tensor charge => constrain amount of CP violation How to extract transversity from exp. data

Available dataset is scarce...

Ideal situation: fully transversely polarized Drell-Yan

$$p^{\uparrow} \bar{p}^{\uparrow} \to \ell + \bar{\ell} + X$$

not technically doable at the moment..

Martin et al., P.R.D60 (99) 117502

Collins effect $S_T \cdot k \times P_{hT}$ Collins, N.P. **B396** (93) 161

$$\propto h_1(x, k_{\perp}) \otimes H_1^{\perp}(z, P_{\perp})$$

TMD framework

Collins effect $S_T \cdot k \times P_{hT}$ Collins, N.P. **B396** (93) 161 $\propto h_1(x,k_{\perp}) \otimes H_1^{\perp}(z,P_{\perp})$ TMD framework

SIDIS

di-hadron mechanism $\mathbf{S}_{T} \cdot \mathbf{P}_{2} \times \mathbf{P}_{1} = \mathbf{S}_{T} \cdot \mathbf{P}_{h} \times \mathbf{R}_{T}$ Collins et al., N.P. **B420** (94)

 $\propto h_1(x) H_1^{\triangleleft}(z, R_T^2)$ SIDIS collinear framework $p p^{\uparrow}$

Yuan, P.R.L. 100 (08)

current knowledge of transversity and tensor charge

Collins effect

most recent extractions

	Framework	e+e-	SIDIS	A _N	Lattice	Soffer bound
Anselmino 2015 P.R. D 92 (15) 114023	parton model	~	r	×	×	~
Kang et al. 2016 P.R. D 93 (16) 014009	TMD / CSS	~	~	×	×	~
Lin et al. 2018 P.R.L. 120 (18) 152502	parton model	×	~	×	✔ g⊤	×
D'Alesio et al. 2020 (CA) P.L. B803 (20) 135347	parton model	~	~	×	×	× , ✓
JAM3D-20 P.R. D102 (20) 054002	parton model	~	~	~	×	×
JAM3D-22 P.R. D106 (22) 034014	parton model	~	~	~	✔ g⊤	$\leq \Delta f_1, \Delta g_1$
Boglione et al. 2024 (TO) P.L. B854 (24) 138712	parton model	~	~	reweighing	×	a posteriori

+ point-by-point extraction from data Martin et al., P.R. D**91** (15) 014034

see talk by Bradamante in the afternoon

Di-hadron mechanism

available extractions

	e+e- unpol. do ⁰	e+e- asymmetry	SIDIS	p-p collisions	Lattice	Soffer bound
Radici & Bacchetta 2018 P.R.L. 120 (18) 192001	PYTHIA (separately)	(separately)	~	~	×	~
Benel et al. 2020 E.P.J. C80 (20) 5	PYTHIA (separately)	(separately)	~	×	×	$\leq \Delta f_1, \Delta g_1$
JAMDIFF 2024 P.R.L. 132 (24) 091901	~	~	~	~	🖌 δu, δd	$\leq \Delta f_1, \Delta g_1$

see round table on Tuesday afternoon for discussion on use of SB, lattice data..

see talk by Schnell (and Vossen?) on Thursday for di-hadron fragmentation

Transversity

D. Pitonyak, QCD Evolution 24

Transversity

Tensor charge

C. Flore, QCD Evolution 24

Tensor charge

C. Flore, QCD Evolution 24

- consistency of phenomenological extractions from a variety of exp. data with different approaches
- increasing precision

Pheno — Lattice : transve

 A_N^π Lattice q_T

 $A_N^{W/Z}$

 $p^{\uparrow} + p \rightarrow (W^+, W^-, Z)$

 $p^\uparrow + p
ightarrow (\pi^+,\pi^-,\pi^0)$ -

0.8

direct calculation on lattice of x-dependence using LaMET

4

3

2

1.5

1

0

0

0.2

0.4

x

0.5

 $h_{\rm v}(x,\mu)/g_T(\mu)$

3.5

courtesy of F. Steffens

JAM18 = Lin et al., P.R.L. 120 (18) 152502 Radici & Bacchetta, P.R.L. 120 (18) 192001 Alexandrou et al., P.R. D99 (19) 114504

Lattice : chiral-odd GP

1

 $A_N^{W/Z}$ $p^{\uparrow} + p \rightarrow (W^+, W^-, Z)$ $p^\uparrow + p
ightarrow (\pi^+,\pi^-,\pi^0)$ -Lattice q_T

 A_N^π

 $m_N = 1.050(8) \text{ GeV}$

 $(3)(2) \, {\rm fm}$

u et al. (ETMC), P.R. D105 (22) 034501

Pheno — Lattice : tensor charge

Lattice g_T

Pheno — Lattice : tensor charge

Lattice g_T

Pheno — Lattice : tensor charge

probability density function of χ^2 distribution

lattice

Radici & Bacchetta, P.R.L. **120** (18) 192001
 PNDME18
 Gupta et al., P.R. D98 (18) 034503

 ETMC17
 Alexandrou et al., P.R. D95 (17) 114514

 E P.R. D96 (17) 099906

no — Lattice : tensor charge

Lebanon Valley College

LE

adapted from D. Pitonyak, QCD Evolution 24

see talks by Pitonyak & Sato in the afternoon

- approximate compatibility of JAM with other phenomenology when using both Collins effect and di-hadron mechanism but not including lattice results in the fit
- including lattice as prior, JAM still compatible with exp. data with both Collins effect and di-hadron mechanism

لي Lebanon Valley College

Lebanon Valley College

Ph

			$\chi^2_{ m red}$		
			JAMDiF'F'		
Experiment	Binning	$N_{\rm dat}$	(w/ LQCD)	(no LQCD)	(SIDIS only)
Belle (cross section)[64]	z, M_h	1094	1.01	1.01	1.01
	z, M_h	55	1.27	1.24	1.28
Belle (Artru-Collins) [111]	M_h, \overline{M}_h	64	0.60	0.60	0.60
	z, ar z	64	0.42	0.42	0.41
	$x_{ m bj}$	4	1.77	1.70	1.67
HERMES [117]	M_h	4	0.41	0.42	0.47
	z	4	1.20	1.17	1.13
	$x_{ m bj}$	9	1.98	0.65	0.59
COMPASS (p) [116]	M_h	10	0.92	0.94	0.93
	z	7	0.77	0.60	0.63
	$x_{ m bj}$	9	1.37	1.42	1.22
COMPASS (D) [116]	M_h	10	0.45	0.37	0.38
	z	7	0.50	0.46	0.46
	$M_h, \eta < 0$	5	2.57	2.56	-
STAR [120]	$M_h, \eta > 0$	5	1.34	1.55	
$\sqrt{s} = 200 \mathrm{GeV}$	$P_{hT}, \eta < 0$	5	0.98	1.00	-
R < 0.3	$P_{hT}, \eta > 0$	5	1.73	1.74	
	η	4	0.52	1.46	
	$M_h, \eta < 0$	32	1.30	1.10	
STAR [96]	$M_h, \eta > 0$	32	0.81	0.78	
$\sqrt{s} = 500 \text{ GeV}$	$P_{hT}, \eta > 0$	35	1.09	1.07	
R < 0.7	η	7	2.97	1.83	
ETMC δu [77]		1	0.71	—	
ETMC δd [77]		1	1.02		-
PNDME δu [71]		1	8.68		
PNDME δd [71]		1	0.04		
Total χ^2_{red} (N_{dat})			1.01 (1475)	0.98 (1471)	0.96(1341)

lattice = 4 pts vs. total = 1475 pts. => statistical weight irrelevant
 => does not alter quality of fit on exp. data...

see round table on Tuesday afternoon

لي Lebanon Valley College

Ph

			$\chi^2_{\rm red}$			
	D' '	AT				
Experiment	Binning	$N_{\rm dat}$	(W/ LQCD)	(no LQCD)	(SIDIS only)	
Belle $(cross section)[64]$	z, M_h	1094	1.01	1.01	1.01	
	z, M_h	55	1.27	1.24	1.28	
Belle (Artru-Collins) [111]	M_h, \overline{M}_h	64	0.60	0.60	0.60	
	z, ar z	64	0.42	0.42	0.41	
	$x_{ m bj}$	4	1.77	1.70	1.67	
HERMES [117]	M_h	4	0.41	0.42	0.47	
	z	4	1.20	1.17	1.13	
	$x_{ m bj}$	9	1.98	0.65	0.59	
COMPASS (p) [116]	M_h	10	0.92	0.94	0.93	
	z	7	0.77	0.60	0.63	
	$x_{ m bj}$	9	1.37	1.42	1.22	
COMPASS (D) [116]	M_h	10	0.45	0.37	0.38	
	z	7	0.50	0.46	0.46	
	$M_h, \eta < 0$	5	2.57	2.56		
STAR [120]	$M_h, \eta > 0$	5	1.34	1.55		
$\sqrt{s} = 200 \mathrm{GeV}$	$P_{hT}, \eta < 0$	5	0.98	1.00		
R < 0.3	$P_{hT}, \eta > 0$	5	1.73	1.74	_	
	η	4	0.52	1.46		
	$M_h, \eta < 0$	32	1.30	1.10		
STAR [96]	$M_h, \eta > 0$	32	0.81	0.78		
$\sqrt{s} = 500 \text{ GeV}$	$P_{hT}, \eta > 0$	35	1.09	1.07		
R < 0.7	η	7	2.97	1.83		
ETMC δu [77]		1	0.71	—	-	
ETMC δd [77]		1	1.02		_	
PNDME δu [71]		1	8.68 🔫			
PNDME δd [71]		1	0.04		1	
Total χ^2_{red} (N_{dat})			1.01 (1475)	0.98 (1471)	0.96(1341)	

- lattice = 4 pts vs. total = 1475 pts. => statistical weight irrelevant
 => does not alter quality of fit on exp. data...
- $\chi^2 \sim 8.7$ on δ u of PNDME => compatibility ??

see round table on Tuesday afternoon

Hadron-in-jet Collins effect

Λ spin transfer

New available exp. data

0.2

х

0.4

0.6

0.8

 \boldsymbol{Z}

0.5

1.5

 $M_{\rm hh}~({\rm GeV}/c^2)$

 $f_1^q(x) D_{1,q}(z, M_{\rm hh}^2, \cos\theta) +$

 $9 \sin \phi_{\rm RS} h_1^q(x) H_{1,q}^{\triangleleft}(z, M_{\rm hh}^2, \cos \theta)$

-0.05

10⁻²

10⁻¹

New data : Compass (π- N) Drell-Yan

$$\pi^{-} + p^{\uparrow} \to \ell \bar{\ell} + X$$
$$A_{T} = \frac{d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow})}{d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow})} \propto \frac{h_{1\pi}^{\perp} \otimes h_{1p}}{f_{1\pi} \otimes f_{1p}}$$

 $\mathbf{\Lambda}$

see talk by Quintans on Wednesday

COMPASS Alexeev et al., arXiv:2312.17379

New data : Compass (π- N) Drell-Yan

$$\pi^{-} + p^{\uparrow} \rightarrow \ell \bar{\ell} + X$$

$$A_{T} = \frac{d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow})}{d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow})} \propto \frac{h_{1\pi}^{\perp} \otimes h_{1p}}{f_{1\pi} \otimes f_{1p}}$$
see talk by Quintans on Wednesday
$$COMPASS \text{ Alexeev et al., arXiv:2312.17379}$$

$$0.2 \qquad 0.2 \qquad 0.3 \qquad 0.4 \qquad 0.6 \qquad 0.8 \qquad 0 \qquad 0.5 \qquad 1 \qquad 2 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \\ M_{\mu\mu} (\text{GeV/c}) \qquad M_{\mu\mu} (\text{GeV/c}) \qquad M_{\mu\mu} (\text{GeV/c})$$

Similar spin asymmetry will be explored at:

- AMBER (including also K beams) see talk by Denisov on Friday

- FermiLab "LongQuest" (with proton-deuteron Drell-Yan)
- LHCspin (with proton-proton Drell-Yan)

New data : STAR

New data : STAR

di-hadron mechanism $p^{\uparrow} + p \rightarrow \pi^+ \pi^- + X$

 $A_{UT} = \frac{d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow})}{d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow})} \xrightarrow{h_1^a \otimes f_1^b \otimes \delta\sigma^{ab \to cd} \otimes H_1^{\triangleleft c}}_{f_1^a \otimes f_1^b \otimes \sigma^{ab \to cd} \otimes D_1^c}$ Bacchetta & Radici, P.R. D**70** (04) 094032

Asymptotic transformed in p_1 at 200 GeV hand dright by p_1 by p_2 by $\sqrt{s} = 200$ GeV

ρ ρ

New data : STAR

di-hadron mechanism $p^{\uparrow} + p \rightarrow \pi^+ \pi^- + X$ $A_{UT} = \frac{d\sigma(p^{\uparrow}) - d\sigma(p^{\downarrow})}{d\sigma(p^{\uparrow}) + d\sigma(p^{\downarrow})} \xrightarrow{h_1^a \otimes f_1^b \otimes \delta\sigma^{ab \to cd} \otimes H_1^{\triangleleft c}}_{f_1^a \otimes f_1^b \otimes \sigma^{ab \to cd} \otimes D_1^c}$ Bacchetta & Radici, P.R. D70 (04) 094032 Asynthese man estry invariant ninantsmaster MATE gint tegit atted int prate 200 GeV tand trighestipp to the 1 att 510 GeV s = 200 GeVs = 510 GeV $\substack{\mathbf{A}_{\mathrm{UT}}^{\mathrm{Sin}(\Phi_{\mathrm{s}},\Phi_{\mathrm{R}})}\\\mathrm{Sin}_{\mathrm{UT}}^{\mathrm{Sin}(\Phi_{\mathrm{s}},\Phi_{\mathrm{R}})}}$ **STAR Preliminary 2015** Radici et. al. Radici et. al., √s = 500 GeV $A_{UT}^{Sin(\Phi_S-\Phi_R)}$ $-\Phi$ STAR 2011, $\sqrt{s} = 500 \text{ GeV}$, L_{int} = 25 pb⁻¹ 0.08 ---- Run 15, Cone < 0.7</p> $p^{\uparrow} + p \rightarrow \pi^{+}\pi^{-} + X \text{ at } \sqrt{s} = 200 \text{ GeV}$ STAR 2017, $\sqrt{s} = 510 \text{ GeV}$, $L_{int} = 350 \text{ pb}^{-1}$ $\langle \mathbf{p}_{_{\mathrm{T}}} \rangle$ = 5.25 GeV/c STAR 2011 PID Sys. STAR 2011 Trig. Bias Sys. STAR 2017 Tot Sys. $\langle \mathbf{p}_{\mathrm{T}} \rangle = 6 \; \mathrm{GeV/c}$ 0.06 $\mathbf{p}^{\uparrow} + \mathbf{p} \rightarrow \pi^{+}\pi^{-} + \mathbf{X}$ 0.0 0.06 Syst. Error $<\mathbf{p}_{T}^{\pi^{+}\pi^{-}}> = 13 \text{ GeV/c}, \ \eta^{\pi^{+}\pi^{-}}> 0$ η^{π⁺π⁻} > 0 0.04 **STAR Preliminary 2017** 0.0 0.04 theory 0.02 0.02 fit 0.0 predictions Summary and Outlook *14% (STAR 2017), #5% (STAR 2011) scile uncertanity from beam polarization (not shown) ± 3% scale uncertainty from beam polarization (not shown) 1.5 0.8 1.2 1.8 0.5 1 2 2.5 0.4 0.6 1 1.4 1.6 $M_{inv}^{\pi^{*}\pi^{*}}(GeV/c^{2})$ $M_{inv}^{\pi^*\pi^*}(GeV/c^2)$ SURFOWR De Surrowa De $M_{inv}^{\pi^+\pi} \overline{M}_{inv}^{\pi^+} \overline{0.8} - G \overline{0.8} / G \overline{0} \sqrt{2} V/c^2$ **STAR Preliminary** $A_{UT} A_{UT}$ 10¹ $p + p \rightarrow \pi^* \pi^* + X$ at $\sqrt{s} = 200 \text{ GeV}$ $+ p \rightarrow \pi^+\pi^- + X \text{ at } \sqrt{s} = 200 \text{ G}$ $\mathbf{A}_{\mathrm{UT}}^{\mathrm{Sin}(\Phi_{\mathrm{s}^{-}})}$ $|\eta^{\pi^*\pi}| < 1, 1 < p_{\pi}^{\pi^*\pi} < 15 \text{ (GeV/c)}, 0.02 < \text{cone} < 0.7$ 10⁹ $0.27 < M_{inv}^{\pi^*\pi} < 4.0 (GeV/c^2), L_{inv} = 26 (pb)^{-1}$ 10⁸ PARP(90)=0.213, CTEQ6 PDFs Data also unpolarized cross section ρ 0.06 **10**⁷ $\stackrel{pb}{(\overline{GeV})}$ 🐼 Syst. Unc JAM DiFF Predicti 10⁶ $\frac{\mathcal{L}_{\mu}}{\mathcal{D}} = \frac{\mathcal{L}_{\mu}}{\mathcal{D}} \frac{\mathcal{L}_{\mu}}{\mathcal{D}} = 10^5$ 0.04 **10⁴** ····· 0.02 10^{3} see talk by Surrow on 10² Thursday morning ± 3% scale uncertainty 0. 0.6 0.8 0.4 Ratio ્રિટ્ટ -0.5

1.5

2 2.5

 $M_{inv}^{\pi^*\pi^*}$ (GeV/c²)

3

3.5

φ

Future (and its impact)

Future: SoLI

Collins effect

L=10 fb⁻¹, 8223 data pts. proton [GeV]: 5x41, 5x100, 10x100, 18x275 ³He [GeV]: 5x41, 5x100, 18x100

-0.1

I I I I

0.0

di-hadron mechanism

 $\mathcal{L}=10 \text{ fb}^{-1}$, 3852 data pts proton&³He [GeV]: 10x100

Lattice results

- 1) Alexandrou et al., arXiv:1909.00485 ETMC '19
- Mainz '19 Harris et al., P.R. D100 (19) 034513 2)
- Hasan et al., P.R. D99 (19) 114505 **LHPC '19** 3)
- **ILOCD '18** Yamanaka et al., P.R. D98 (18) 054516 4)
- PNDME '18 Gupta et al., P.R. D98 (18) 034503 5)
- Alexandrou et al., P.R. D95 (17) 114514; (E) P.R. D96 (17) 099906 6) **ETMC '17**
- 7) **RQCD** '14 Bali et al., P.R. D91 (15) 054501
- 8) Green et al., P.R. D86 (12) 114509 **LHPC '12**

hadron-in-jet Collins effect

Arratia et al., P.R. D102 (20) 074015

solving the puzzle...

see talk by Boer on Wednesday

