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A novel approach to assist fast tracking at the ATLAS trigger

A. ZA10 ON BEHALF OF THE ATLAS COLLABORATION
INFN & Universita di Genova - Genowva, Italy

Summary. — The track reconstruction process within the trigger system of the
ATLAS experiment shows a processing time which increases significantly as a func-
tion of the average pile-up amount of the pp collisions, so that the future upgrade to
the High-Luminosity LHC (HL-LHC), with way higher levels of pile-up, will imply
a considerable growth of the computational cost for the current trigger algorithms.
To face this issue, an innovative machine-learning-based technique to assist tracking
by filtering out background hits is presented and characterized. The algorithm is
based on a Convolutional Neural Network architecture and is trained and tested
using an independently developed toy event generator.

1. — Introduction: online tracking in ATLAS

While the Level 1 (L1) trigger of the ATLAS experiment [1] operates using the
hardware information coming from the calorimeters and the muon spectrometer, at the
software-based High Level Trigger (HLT) also the information from the Inner Detector
(ID) is available, so that the first online reconstruction of tracks, tracking, happens at
this stage. Within the HLT the process that requires the most CPU resources is indeed
tracking, which consists of two sequential steps: Fast Tracking and Precision Tracking.

The Fast Track Finder (FTF) initially finds sets of three spacepoints which may be
compatible with the passing of a charged track and then identifies track candidates ex-
tending the triplets to the remaining layers. The Precision Tracking stage then selects
the highest quality tracks and applies a fit to them.

In Run 2 data, it has been observed that the time required for the TFT algorithms
follows a power law dependency on the average pile-up level, quantified by (u), which is
defined as the mean number of pp interactions associated with the collisions of proton
bunches. This power law behaviour, which can be observed in the right-hand plot of
figure 1, is due to the combinatorial nature of the FTF algorithms, so that increasing
the space-point density, with higher (), a way higher number of combinations will arise,
hence slowing down the process.

(© Copyright 2024 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license
Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)
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Fig. 1.: The plots show the mean of the total processing time per event, as a function of (u),
for the various tracking algorithms. We notice that the data preparation processes (left) take
considerably less time compared to the FTF (right), which shows a power-law behaviour. [1]

2. — A new approach to assist tracking

While the average pile-up obtained in 2018 during Run 2 was (u) =36.1, with the
upgrade to HL-LHC values between 140 and 200 are expected, so that the current CPU
farm handling the algorithms running at the HLT, would not be able to support the
computing cost. Therefore, a rethinking of the trigger strategies is underway, which
could also involve the usage of heterogeneous hardware, including GPUs and/or FPGAs.

In this context, this work proposes a Machine Learning (ML) algorithm which would
receive the space points obtained from the Inner Detector (ID) with the goal of filtering
out the points due to pile-up tracks from the region of interest (Rol), thereby reducing
the combinatorial complexity within Fast Tracking.

The architecture chosen for this purpose and studied in this work is a Convolutional
Neural Network (CNN), since these models can be easily accelerated on FPGA boards
through the usage of commercial software. Furthermore, since the algoritm will receive
image inputs with fixed dimensions, we expect that the time to filter out pile-up hits
won’t depend strongly on the hit density of the event.

3. — Toy-model event generator

While the final goal is to apply the algorithm to ATLAS events, we start by training
and testing the algorithm on synthetic events generated through a simplified model, in
order to test the validity of this idea. The hits included in the generated events are
divided into two categories:

e Signal: obtained by intersecting charged tracks with the ID layers;

e Background: noise hits randomly generated without considering the correlation
between hits from different layers.

In order to simulate the Rol structure the hits are generated within an angular cone
defined by AR < 0.8, but are then projected on the zy plane, in order to obtain a
2D representation that could then be easily supplied to the CNN architecture, which is
designed to handle image inputs.
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To approach a more realistic description, we consider an ATLAS Monte Carlo (MC)
simulation of # jets and calculate the hit density per layer and as a function of the pile-
up. We use these parameters to generate the synthetic events, so that they can mimic the
hit density corresponding to different values of (i) for MC generated events, as shown in
figure 2.
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Fig. 2.: Display of two event examples from the toy model generator, with signal hits
in red and background hits in black. The event on the right is generated using the hit
density values relative to (u)=10, while for the event on the left (u)=40.

The change of representation from the (z,y) to the (¢, Layer) coordinates allows to
better distinguish the hits as separate pixels and is also more suited for an image input,
as can be seen in figure 3. In order to partition the ¢ axis, a binning is introduced: in
this study the bin-width is set to 0.02 radians, which corresponds to 68 pm in the first
layer and about 1 pum in the eighth layer.
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Fig. 3.: The same events from figure 2 are now displayed in the (¢, Layer) coordinates.
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4 A. ZAIO ON BEHALF OF THE ATLAS COLLABORATION

The event on the left of figure 3 shows a low pp signal track, where the signal hits
change their ¢ values across layers. In contrast, high pr signal tracks maintain aligned ¢
values across layers, forming a more recognizable pattern. Consequently, the algorithm
is expected to perform better for high pr signal tracks.

4. — The CNN Filtering Algorithm

After describing the event generator, we now characterize the CNN algorithm. The
network receives input matrices where bin contents are set to 1 if the bin is associated
with at least one hit, either signal or background, while the remaining bins have a value
of 0. The goal of the CNN is to output a matrix of the same dimensions as the input,
with bin contents equal to 1 for the pixels associated with signal hits, and instead 0 for
pixels associated with background hits.

This task is analogous to the task of Denoising Autoencoders [3] [4], which is to
reconstruct a clean version of the noisy input data by learning to distinguish between
signal and noise. For this reason the CNN filtering algorithm draws inspiration from the
architecture of Denoising Autoencoders, which is characterized by input compression in
the Encoder phase and the return to the input size in the Decoder phase.

The architecture of the filtering algorithm, as shown in figure 4, alternates the Con-
volutional layer with the Max Pooling layer [5] [6] in the encoder phase, and with the

Upsampling layer [6] [7] in the decoder phase.

16
Conv

- ]
UpSampl Conv "

UpSamplConv

2 |
InputConv UpSampl Output

Fig. 4.: Schematic representation of the architecture of the CNN filtering algorithm. The
red color associated with the Convolutional layers represents the ReLLU function.

The described model is quite simple, allowing much room for improvement. The model
is also very lightweight, containing only 12 thousand parameters, which would make it
particularly well-suited for fast inference. For comparison ResNet-50 [8], which is a CNN
architecture widely used for image recognition tasks, has 25.6 million parameters.

The loss used to train the model is a Mean Squared Error (MSE) loss:

(1) L= Z (yi — 0:)%,

which is computed between the output values § and the target values y of the bins
containing either signal or background hits, which are indexed by i.
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A NOVEL APPROACH TO ASSIST FAST TRACKING AT THE ATLAS TRIGGER 5

The training dataset is composed of 1 million events with a single signal track of
pr € [0.5 GeV,50 GeV], and the training occurs for 50 epochs using the Adam optimizer.

The trained network is then tested on an independently generated sample, and the
distribution of the output of the bins is shown in figure 5. This plot shows that the
network has learned the filtering task, since most of the background hits have value 0 in
output the majority of the signal hits receive values close to 1.

signal
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Count
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output

Fig. 5.: Distribution of the output obtained from the filtering CNN for both signal and
background hits. [6]

It’s now possible to use the bins output value as the discriminant between the signal
and background categories, so that the bins with output below a defined ¥y, are associ-
ated to noise hits, while the bins with § > y..; are classified as signal.

We now define the efficiency of the filtering algorithm as the ratio between the signal
hits correctly classified by the algorithm and the total number of signal hits in the event,
which is 8. We want to investigate how the efficiency is dependent on the pr value of
the signal track, and to do so we start by defining the Working Points (WPs) for this
evaluation. To define the WPs we test the model on a sample with signal tracks of
pr € [40 GeV, 50 GeV], for which we expect high efficiency values, and look at the yeyt
values that correspond to an average efficiency of 90%, 95% and 98%.
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Fig. 6.: Efficiency as a function of pr of the signal track in the event, computed for the
90%, 95% and 98% WPs. These WPs correspond to the mentioned efficiencies when
integrated in between 40 and 50 GeV. [6]
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6 A. ZAIO ON BEHALF OF THE ATLAS COLLABORATION

Using the values of y.,; obtained, we now use this values for the classification of the
pr € [0.5 GeV,50 GeV] sample, and then look at how the efficiency depends on pr.

We have introduced the 40-50 GeV sample so that the WP value would correspond
to the plateau value of the efficiency at high pr, which would not have happened if we
have used the 0.5-50 GeV sample instead.

The behaviour of the efficiency as a function of pr is displayed in figure 6, where it’s
clear that the efficiency worsens for lower values of pr. Nevertheless, in the case of the
98% WP, the algorithm keeps an efficiency above 90% down to 4 GeV signal tracks.

5. — Conclusions

This work presented a novel ML approach using CNNs to classify hits in a simulated
tracking detector, distinguishing charged particle signals from noise. This method aims
to address the computational challenges of track reconstruction at the trigger level for the
future High-Luminosity LHC program. The CNN filtering algorithm shows promising
potential, due to the simple model used and the low number of parameters. Future
developments include a more realistic event generator, where the background hits will
actually be due to pile-up tracks, and the application of the algorithm to ATLAS events.
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