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A novel approach to assist fast tracking at the ATLAS trigger
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Summary. — The track reconstruction process within the trigger system of the
ATLAS experiment shows a processing time which increases significantly as a func-
tion of the average pile-up amount of the pp collisions, so that the future upgrade to
the High-Luminosity LHC (HL-LHC), with way higher levels of pile-up, will imply
a considerable growth of the computational cost for the current trigger algorithms.
To face this issue, an innovative machine-learning-based technique to assist tracking
by filtering out background hits is presented and characterized. The algorithm is
based on a Convolutional Neural Network architecture and is trained and tested
using an independently developed toy event generator.

1

1. – Introduction: online tracking in ATLAS2

While the Level 1 (L1) trigger of the ATLAS experiment [1] operates using the3

hardware information coming from the calorimeters and the muon spectrometer, at the4

software-based High Level Trigger (HLT) also the information from the Inner Detector5

(ID) is available, so that the first online reconstruction of tracks, tracking, happens at6

this stage. Within the HLT the process that requires the most CPU resources is indeed7

tracking, which consists of two sequential steps: Fast Tracking and Precision Tracking.8

The Fast Track Finder (FTF) initially finds sets of three spacepoints which may be9

compatible with the passing of a charged track and then identifies track candidates ex-10

tending the triplets to the remaining layers. The Precision Tracking stage then selects11

the highest quality tracks and applies a fit to them.12

In Run 2 data, it has been observed that the time required for the TFT algorithms13

follows a power law dependency on the average pile-up level, quantified by ⟨µ⟩, which is14

defined as the mean number of pp interactions associated with the collisions of proton15

bunches. This power law behaviour, which can be observed in the right-hand plot of16

figure 1, is due to the combinatorial nature of the FTF algorithms, so that increasing17

the space-point density, with higher ⟨µ⟩, a way higher number of combinations will arise,18

hence slowing down the process.19

© Copyright 2024 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license
Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0) 1



2 A. ZAIO ON BEHALF OF THE ATLAS COLLABORATION

Fig. 1.: The plots show the mean of the total processing time per event, as a function of ⟨µ⟩,
for the various tracking algorithms. We notice that the data preparation processes (left) take
considerably less time compared to the FTF (right), which shows a power-law behaviour. [1]

2. – A new approach to assist tracking20

While the average pile-up obtained in 2018 during Run 2 was ⟨µ⟩=36.1, with the21

upgrade to HL-LHC values between 140 and 200 are expected, so that the current CPU22

farm handling the algorithms running at the HLT, would not be able to support the23

computing cost. Therefore, a rethinking of the trigger strategies is underway, which24

could also involve the usage of heterogeneous hardware, including GPUs and/or FPGAs.25

In this context, this work proposes a Machine Learning (ML) algorithm which would26

receive the space points obtained from the Inner Detector (ID) with the goal of filtering27

out the points due to pile-up tracks from the region of interest (RoI), thereby reducing28

the combinatorial complexity within Fast Tracking.29

The architecture chosen for this purpose and studied in this work is a Convolutional30

Neural Network (CNN), since these models can be easily accelerated on FPGA boards31

through the usage of commercial software. Furthermore, since the algoritm will receive32

image inputs with fixed dimensions, we expect that the time to filter out pile-up hits33

won’t depend strongly on the hit density of the event.34

3. – Toy-model event generator35

While the final goal is to apply the algorithm to ATLAS events, we start by training36

and testing the algorithm on synthetic events generated through a simplified model, in37

order to test the validity of this idea. The hits included in the generated events are38

divided into two categories:39

• Signal: obtained by intersecting charged tracks with the ID layers;40

• Background: noise hits randomly generated without considering the correlation41

between hits from different layers.42

In order to simulate the RoI structure the hits are generated within an angular cone43

defined by ∆R ≤ 0.8, but are then projected on the xy plane, in order to obtain a44

2D representation that could then be easily supplied to the CNN architecture, which is45

designed to handle image inputs.46
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To approach a more realistic description, we consider an ATLAS Monte Carlo (MC)47

simulation of tt̄ jets and calculate the hit density per layer and as a function of the pile-48

up. We use these parameters to generate the synthetic events, so that they can mimic the49

hit density corresponding to different values of ⟨µ⟩ for MC generated events, as shown in50

figure 2.51

Fig. 2.: Display of two event examples from the toy model generator, with signal hits
in red and background hits in black. The event on the right is generated using the hit
density values relative to ⟨µ⟩=10, while for the event on the left ⟨µ⟩=40.

The change of representation from the (x, y) to the (ϕ,Layer) coordinates allows to52

better distinguish the hits as separate pixels and is also more suited for an image input,53

as can be seen in figure 3. In order to partition the ϕ axis, a binning is introduced: in54

this study the bin-width is set to 0.02 radians, which corresponds to 68 µm in the first55

layer and about 1 µm in the eighth layer.56

Fig. 3.: The same events from figure 2 are now displayed in the (ϕ,Layer) coordinates.
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The event on the left of figure 3 shows a low pT signal track, where the signal hits57

change their ϕ values across layers. In contrast, high pT signal tracks maintain aligned ϕ58

values across layers, forming a more recognizable pattern. Consequently, the algorithm59

is expected to perform better for high pT signal tracks.60

4. – The CNN Filtering Algorithm61

After describing the event generator, we now characterize the CNN algorithm. The62

network receives input matrices where bin contents are set to 1 if the bin is associated63

with at least one hit, either signal or background, while the remaining bins have a value64

of 0. The goal of the CNN is to output a matrix of the same dimensions as the input,65

with bin contents equal to 1 for the pixels associated with signal hits, and instead 0 for66

pixels associated with background hits.67

This task is analogous to the task of Denoising Autoencoders [3] [4], which is to68

reconstruct a clean version of the noisy input data by learning to distinguish between69

signal and noise. For this reason the CNN filtering algorithm draws inspiration from the70

architecture of Denoising Autoencoders, which is characterized by input compression in71

the Encoder phase and the return to the input size in the Decoder phase.72

The architecture of the filtering algorithm, as shown in figure 4, alternates the Con-73

volutional layer with the Max Pooling layer [5] [6] in the encoder phase, and with the74

Upsampling layer [6] [7] in the decoder phase.75

Fig. 4.: Schematic representation of the architecture of the CNN filtering algorithm. The
red color associated with the Convolutional layers represents the ReLU function.

The described model is quite simple, allowing much room for improvement. The model76

is also very lightweight, containing only 12 thousand parameters, which would make it77

particularly well-suited for fast inference. For comparison ResNet-50 [8], which is a CNN78

architecture widely used for image recognition tasks, has 25.6 million parameters.79

The loss used to train the model is a Mean Squared Error (MSE) loss:80

(1) L =
∑
i

(yi − ŷi)
2 ,

which is computed between the output values ŷ and the target values y of the bins81

containing either signal or background hits, which are indexed by i.82
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The training dataset is composed of 1 million events with a single signal track of83

pT ∈ [0.5 GeV, 50 GeV], and the training occurs for 50 epochs using the Adam optimizer.84

The trained network is then tested on an independently generated sample, and the85

distribution of the output of the bins is shown in figure 5. This plot shows that the86

network has learned the filtering task, since most of the background hits have value 0 in87

output the majority of the signal hits receive values close to 1.88

Fig. 5.: Distribution of the output obtained from the filtering CNN for both signal and
background hits. [6]

It’s now possible to use the bins output value as the discriminant between the signal89

and background categories, so that the bins with output below a defined ycut are associ-90

ated to noise hits, while the bins with ŷ ≥ ycut are classified as signal.91

We now define the efficiency of the filtering algorithm as the ratio between the signal92

hits correctly classified by the algorithm and the total number of signal hits in the event,93

which is 8. We want to investigate how the efficiency is dependent on the pT value of94

the signal track, and to do so we start by defining the Working Points (WPs) for this95

evaluation. To define the WPs we test the model on a sample with signal tracks of96

pT ∈ [40 GeV, 50 GeV], for which we expect high efficiency values, and look at the ycut97

values that correspond to an average efficiency of 90%, 95% and 98%.98

Fig. 6.: Efficiency as a function of pT of the signal track in the event, computed for the
90%, 95% and 98% WPs. These WPs correspond to the mentioned efficiencies when
integrated in between 40 and 50 GeV. [6]
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Using the values of ycut obtained, we now use this values for the classification of the99

pT ∈ [0.5 GeV, 50 GeV] sample, and then look at how the efficiency depends on pT .100

We have introduced the 40-50 GeV sample so that the WP value would correspond101

to the plateau value of the efficiency at high pT , which would not have happened if we102

have used the 0.5-50 GeV sample instead.103

The behaviour of the efficiency as a function of pT is displayed in figure 6, where it’s104

clear that the efficiency worsens for lower values of pT . Nevertheless, in the case of the105

98% WP, the algorithm keeps an efficiency above 90% down to 4 GeV signal tracks.106

5. – Conclusions107

This work presented a novel ML approach using CNNs to classify hits in a simulated108

tracking detector, distinguishing charged particle signals from noise. This method aims109

to address the computational challenges of track reconstruction at the trigger level for the110

future High-Luminosity LHC program. The CNN filtering algorithm shows promising111

potential, due to the simple model used and the low number of parameters. Future112

developments include a more realistic event generator, where the background hits will113

actually be due to pile-up tracks, and the application of the algorithm to ATLAS events.114
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