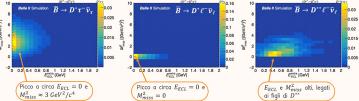


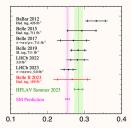
Decadimenti con energia mancante del mesone B

Giovanni Gaudino per la collaborazione Belle II Italia

Tag Adronico


Le analisi presentate qui sono fatte usando un Taq Adronico

- Si seleziona prima il gruppo di tracce e sciami π elettromagnetici, poi assegnate al primo B, chiamato B_{tag} .
- ullet Il taq adronico seleziona buoni candidati B_{tag} con un efficienza circa uquale a 0.4%
- Riduce la maggior parte del fondo continuo $e^+e^- o q \overline{q}$ e il fondo combinatorio
- Completa conoscenza del momento mancante
- Completezza del decadimento che si cerca di misurare


$R_{\tau/\ell}(D^*)$

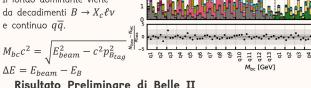
Si selezionano il canale τ e il canale ℓ nello **stesso stato** finale ($\tau \to \ell \nu \overline{\nu}$) per ridurre incertezze sistematiche legato al rapporto finale.

Si ricostruisce la D^* nei seguenti modi: $D^{*+} \stackrel{'}{\to} D^0 \pi^0/D^+ \pi^0$ e $D^{*0} \to D^0 \pi^0$

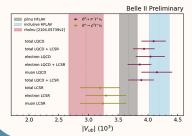
Risultato Preliminare di Belle II

Fit 2D con massima verosimiqlianza binnata

- E_{ECL} : energia da sciami neutri non assegnati né alla $B_{tag}\,$ né alla $B_{sig}\,$
- $c^2 M_{miss} = |p_{e^+e^-} p_{B_{tag}} p_{D^*} p_{\ell}|$: massa mancante dell'evento


arXiv:2401.02840

$\overline{B} \to \overline{\pi/\rho\ell\nu}$

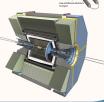

Fit Simultaneo 2D per estrarre il segnale:

- $M_{bc} \Delta \vec{E}$ in bin di q^2
- 13 bin per il canale π e 10 bin per il canale ρ

Il fondo dominante viene e continuo $q\overline{q}$.

Risultato Preliminare di Belle II

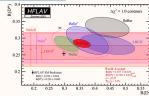
Una volta misurati i rapporti di decadimento, sono estratti i diversi valori $|V_{ub}|$, nel canale elettrone, muone e inclusivo.

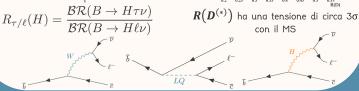

Nuovo a Moriond 2024

SuperKEKB e Belle II

SuperKEKB:

- Collisionatore e^+e^- con energie di 4 e 7 GeV con massa invariante alla **risonanza** Y(4S)
- Raggiunto record mondiale del picco di luminosità L= $4.7 \times 10^{34} cm^{-2} s^{-1}$
- Si trova a Tsukuba, Giappone


- Circa 4π di copertura angolare, capacità di misurare canali con energia mancante
- Prestazioni simili tra elettroni e muoni
- Costruito e ottimizzato per particelle neutre nello

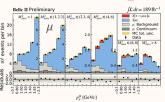


Motivazioni

Decadimenti Semileptonici:

- I decadimenti semileptonici del mesone Bsono sensibili alla nuova fisica oltre il Modello Standard
- Le misure di rapporti di frazioni di decadimento forniscono prove stringenti dell'universalità leptonica

Si ricostruisce **solo** $au ightarrow \ell u u$ per eliminare incertezze sistematiche


- Correzione della forma del MC usando i dati. Validazione delle correzioni in diverse regioni di controllo
- Fit Finale: 34 bin in p_ℓ vs M_{miss}^2 con componenti: $X \tau \nu$, $X\ell\nu$, fondo $B\overline{B}$

Correzione

Risultato Preliminare di Belle II

 $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{(stat)} \pm 0.036 \text{(sys)}$ arXiv:2311.07248

Universalità tra leptoni leggeri

Richiedendo un impulso più alto ai leptoni si può anche misurare il rapporto tra elettroni e muoni: $p > 1.3 \, GeV/c$

Risultato di Belle II

 $R(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{sys})$ PhysRevLett.131.051804

IFAE 2024 - Poster Session

4 Aprile 2024

