

MINTERNATIONAL UON Collider Collaboration

# Higgs Physics at Multi-TeV Muon Collider

INFN

PADOV/

P. Andreetto<sup>1</sup>, M. Casarsa<sup>2</sup>, A. Gianelle<sup>1</sup>, C. Giraldin<sup>1,3</sup>, D. Lucchesi<sup>1,3</sup>, L. Sestini<sup>1</sup>, D. Zuliani<sup>1,3</sup>

IFAE 2024 Istituto degli Innocenti, Piazza SS Annunziata Firenze, 03-05 aprile 2024

<sup>1</sup> INFN Sezione di Padova
<sup>2</sup> INFN Sezione di Trieste
<sup>3</sup> Università degli Studi di Padova

## Il futuro della Fisica delle Particelle

- Lo studio delle proprietà del **Bosone di Higgs** è fondamentale per testare la fisica del Modello Standard
- La recente Strategia Americana per la Fisica delle Particelle ha identificato le collisioni multi-TeV tra leptoni come uno strumento per fare questi studi (Higgs factories)
- Nel panorama dei futuri acceleratori, un multi-TeV Muon **Collider** è una macchina che unisce i **vantaggi** dei collisori leptonici (elettrone-positrone), e adronici
- IMCC prevede la partenza nel **2050**, e due possibilità sono  $\mathfrak{L} \approx f_r n_b \frac{N_+ N_-}{(4\pi)^2 \sigma_+^2} \frac{\tau_\mu e B}{m_\mu}$ presenti:
  - un primo stadio a 3 TeV, e un successivo stadio a 10 TeV 0
  - partire direttamente a 10 TeV (luminosità ridotta)  $\bigcirc$
- La decisione dipenderà da diversi fattori, principalmente dallo sviluppo dei magneti





https://muoncollider.web.cern.ch/welcome-page-muon-collider-website

## Un ospite indesiderato: il Beam-Induced Background (BIB)



- I **muoni decadono**  $\rightarrow$  i prodotti del decadimento
- $\mu^-$  interagiscono con la macchina
  - $\rightarrow$  intensi flussi di particelle nel rivelatore:
    - altissima molteplicità di particelle nel tracciatore
    - fondo diffuso nei calorimetri
  - Sono fondamentali **tecniche innovative** e algoritmi appositamente ottimizzati per **mitigare il BIB** 
    - Due coni attenuatori in tungsteno (nozzles) schermano la maggior parte della radiazione
    - Il BIB è **fuori tempo** rispetto all'interazione primaria

#### Il rivelatore del Muon Collider



- **Rivelatore di vertici:** pixel in silicio da 25x25 µm<sup>2</sup>
- **Nozzles:** coni di tungsteno + polietilene borato

#### • Tracciatore:

- ο Interno: macro-pixel di silicio, 50 μm x 1 mm
- Esterno: micro-strip di silicio, 50 µm x 10 mm
- Calorimetri:
  - ECAL: 40 layer di silicio + tungsteno (22  $X_0$ )
  - HCAL: 60 layer di ferro + scintillatore (7.5  $\lambda_1$ )
- Solenoide: campo magnetico da 3.57 T
- **Camere dei muoni:** RPC + ferro, celle da 30x30 mm<sup>2</sup>

### La fisica del Bosone di Higgs al Muon Collider

• Il Muon Collider è una **Higgs factory**:

https://iopscience.iop.org/article/10.1088/1361-6633/ac6678

- misure precise degli accoppiamenti tra Bosone di Higgs e leptoni/bosoni
- misura del **potenziale** del Bosone di Higgs
- Questi studi prevedono la **stima dell'incertezza statistica** su  $\sigma_H x BR(H \rightarrow xx) (= \Delta \sigma_{H \rightarrow xx} / \sigma_{H \rightarrow xx})$  per vari canali di decadimento del Bosone di Higgs
- In questi studi, oltre ai vari fondi di fisica, il contributo del BIB è incluso
- I canali di decadimento studiati sono: <u>https://pos.sissa.it/414/515</u>
  - solo getti: H→bb
  - $\circ$  leptone + getti: H  $\rightarrow$  WW and H  $\rightarrow$  ZZ
  - o solo leptoni: H→µµ
  - $\circ$  solo fotoni: H→γγ



# Risultati per $H \rightarrow bb \in H \rightarrow \gamma \gamma$

- $H \rightarrow bb$  canale di decadimento **favorito** (BR ~ 58.2%)
- Stato finale: almeno due getti ricostruiti
  - Algoritmo  $k_{T}$  con R=0.5
  - $p_T > 40 \text{ GeV} e |\eta| < 2.5$
  - Tagli di qualità per rimuovere getti prodotti dal BIB
  - Algoritmo di identificazione dei getti prodotti da quark b che sfrutta le proprietà del vertice secondario
- $H \rightarrow \gamma \gamma$ : almeno due fotoni molto energetici
  - E>15 GeV e 10°<θ<170°</li>
  - $\circ$  p<sub>T</sub>>40 GeV per il fotone più energetico
  - Se sono presenti più di due fotoni, si prendono i più energetici
  - o m(γγ)>40 GeV
- Un **Boosted Decision Tree** (BDT) viene allenato per distinguere H-γγ dai fondi



# Riepilogo dei risultati e confronto simulazione parametrica

- Il **BIB** rappresenta l'ostacolo più **importante** per la misurazione di questi processi
- Valutare ogni processo con il BIB può essere molto complesso dal punto di vista computazionale

| Canale di decadimento | Sim. dettagliata | Sim. parametrica |
|-----------------------|------------------|------------------|
| H→bb                  | 0.75%            | 0.76%            |
| H→WW                  | 2.9%             | 1.7%             |
| H→ZZ                  | 17%              | 11%              |
| H→µµ                  | 38%              | 40%              |
| Н→үү                  | 7.6%             | 6.1%             |

https://arxiv.org/abs/2308.02633

- Il BIB è perfettamente sotto controllo
- Ciò ci garantisce di poter raggiungere i risultati che gli studi fenomenologici hanno già individuato
- Il Muon Collider è molto competitivo rispetto ad altri esperimenti futuri

- I risultati appena mostrati possono essere confrontati con degli studi fenomenologici basati su simulazioni parametriche del rivelatore (Delphes card)
- **Ottimo accordo** tra i risultati ottenuti con simulazione dettagliata e parametrica



### Determinazione del potenziale del bosone di Higgs

Misurare il potenziale del Bosone di Higgs è  $10^{3}$  $10^{2}$ fondamentale per cercare segnali di Nuova Fisica 10 Lo studio dell'auto-accoppiamento  $\lambda_3$  può essere fatto 10 [] 10<sup>−</sup> studiando il canale HH→bbbb https://arxiv.org/pdf/1910.00012.pdf  $10^{-2}$ 10-3 Esperimento Luminosità Energia c.d.m. δλ  $10^{-4}$ 5 ab<sup>-1</sup>  $10^{-5}$ CLIC 3 TeV -7%,+11%  $10^{-6}$ ILC 8 ab<sup>-1</sup> 1 TeV 10% 30 ab<sup>-1</sup> FCC-hh 100 TeV 6% Muon Collider 5 ab<sup>-1</sup> 3 TeV 10% 200 10 ab<sup>-1</sup> Muon Collider 10 TeV 5% 150

- Possibilità di studiare l'auto-accoppiamento quartico  $\lambda_4$ 
  - Ad oggi solo studio fenomenologico
  - Studio con simulazione dettagliata in corso

Da studio parametrico, incertezza su  $\lambda_4$ = 50% con 20 ab<sup>-1</sup>



https://iopscience.iop.org/article/10.1088/1361-6633/ac6678

# Doppia produzione del Bosone di Higgs: HH $\rightarrow$ bbbb

- Il processo HH è particolarmente sensibile all'auto-accoppiamento trilineare  $\lambda_3$
- In questo studio, solo il canale  $HH \rightarrow bbbb$  è stato considerato
- Selezione dell'evento: quattro getti ricostruiti
  - $\circ$  p<sub>T</sub> > 20 GeV e |η|<2.5
  - i candidati HH sono ottenuti combinando i getti per minimizzare una particolare figura di merito
  - algoritmo di identificazione dei b-getti richiesto in almeno un getto per coppia
- Una **Rete Neurale** (NN) è usata per separare segnale da fondo



• Lo stesso studio usando il canale  $HH{\rightarrow}bb\gamma\gamma$  è in corso



### Conclusioni

- Il Muon Collider è una eccellente Higgs factory
- Nonostante la presenza del BIB, i risultati di fisica sono competitivi
- Questi risultati possono ancora migliorare, in particolare c'è ampio margine di ottimizzazione per quanto riguarda:
  - la definizione della macchina
  - la definizione del rivelatore (presentazione di Carlo Giraldin)
  - o algoritmi di ricostruzione degli oggetti di fisica
- I risultati ottenuti con la simulazione dettagliata del rivelatore sono **compatibili** con gli studi ottenuti usando simulazioni parametriche
  - Il potenziale del Muon Collider è enorme
  - Un Muon Collider a 3 TeV è solo il primo passo verso un esperimento in grado di testare il Modello Standard e la fisica del Bosone di Higgs con una precisione mai vista prima





Minternational -UON Collider Collaboration

# Grazie per l'attenzione

INFN

PADOVA



MInternational UON Collider Collaboration

# Backup slides

VA INT

#### **BIB nel tracciatore**



#### Cinematica del Bosone di Higgs

