Incontri di Fisica delle Alte Energie (IFAE) 2024, 3-5 Aprile

Elena Mazzeo

Università degli Studi & INFN Milano

UNIVERSITÀ **DEGLI STUDI DI MILANO**

$X \rightarrow S(\rightarrow bb)H(\rightarrow \gamma\gamma)$:

Ricerca di una nuova risonanza X che decade in un bosone di Higgs e in un generico scalare S, nello stato finale bbyy con l'esperimento ATLAS

Il bosone di Higgs è l'unica particella scalare in Natura?

 $\operatorname{con} \mathbf{m}_{\mathbf{H}} = 125 \text{ GeV!}$

SM e' incompleto! _O

- Il bosone di Higgs osservato nel 2012 (SM Higgs, con $m_{
 m H}=125$ GeV) e' l'unica particella scalare in natura?
 - Numerose estensioni del SM prevedono un settore di Higgs esteso che include particelle scalari aggiuntive (= l'unica fin ora osservata e' il bosone di Higgs con $m_H = 125$).

Nuove particelle scalari potrebbero essere prodotte in **collisioni** *pp* **@ LHC**! — Come il SM Higgs! Fenomenologia @ LHC: $pp \rightarrow$ nuova particella scalare $X \rightarrow$ nuova particella scalare S + bosone di Higgs H!

Ricerca di $\mathbf{X} \rightarrow \mathbf{S}(\rightarrow \mathbf{b}\bar{\mathbf{b}}) + \mathbf{H}(\rightarrow \gamma\gamma)$

Perfetto accordo

Ricerca di X \rightarrow S(\rightarrow bb) + H($\rightarrow \gamma\gamma$)

Questa analisi ricerca una nuova risonanza scalare X, che decade in una nuova particella scalare più leggera S e in un bosone

di Higgs H, nello stato finale con due fotoni e due quark bottom nei dati raccolti da ATLAS durante il Run 2 di LHC (= 140 fb⁻¹)!

- L'analisi testa un ampio intervallo per m_{χ} ed m_{S} . ⇒ 170 ≤ $m_X \le 1000 \text{ GeV} \times 15 \le m_S \le 500 \text{ GeV}!$
- Per ciascun $(\mathbf{m}_{\mathbf{X}}, \mathbf{m}_{\mathbf{S}})$ la presenza di un segnale $\mathbf{X} \rightarrow \mathbf{S}(\rightarrow \mathbf{b}\bar{\mathbf{b}}) + \mathbf{H}(\rightarrow \gamma\gamma)$ comporterebbe tre risonanze nelle distribuzioni delle masse invarianti $\gamma\gamma$, $b\bar{b}$, e $b\bar{b}\gamma\gamma$.
 - **Chiave** per distinguere il segnale dai fondi (= non-risonanti)! Produzione non-risonante HH $\rightarrow b\bar{b}\gamma\gamma$, produzione di un singolo $H \rightarrow \gamma\gamma$ + jet adronici, e produzione non-risonante di fotoni + jet adronici.

Elena Mazzeo

Ricerca di $\mathbf{X} \rightarrow \mathbf{S}(\rightarrow \mathbf{b}\bar{\mathbf{b}}) + \mathbf{H}(\rightarrow \gamma\gamma)$

 $\mathbf{S} \rightarrow \mathbf{b}\overline{\mathbf{b}}$: canale **dominante** per un \mathbf{S} simile al bosone di Higgs, con $m_{
m S}$ < 130 GeV. La **cinematica dipende fortemente** dalla

differenza tra le masse m_{χ} , m_{S} , e m_{H} .

Nuovo risultato! (= <u>referenza</u> e presentazione alla <u>conferenza Moriond EW)</u>!

Probabilità di decadimento $H \rightarrow \gamma \gamma$ **molto bassa (0.23%)**, compensata da: Eccellente efficienza di trigger e ricostruzione dei fotoni con il rivelatore ATLAS. **Eccellente risoluzione** della massa invariante dei due fotoni $m_{\gamma\gamma}$ (1-2 GeV)!

Selezione degli eventi & categorizzazione

Gli eventi interessanti per l'analisi $X \to S(\to bb) + H(\to \gamma\gamma)$ sono caratterizzati da una segnatura $bb + \gamma\gamma$.

Selezione di-fotone — Seleziona eventi compatibili con il decadimento $H \rightarrow \gamma \gamma$.

- ~~1

- Due fotoni tight e isolati.

-
$$p_T^{\gamma_{1(2)}}/m_{\gamma\gamma} > 0.35(0.25) e 105 < m_{\gamma\gamma} < 0.100$$

Selezione b-jet ----> Due categorie distinte in base al numero di b-jet.

$\mathbf{m}_{\mathbf{S}} \sim \mathbf{m}_{\mathbf{X}} - \mathbf{m}_{\mathbf{H}}$

- I quark bottom vengono ricostruiti come due *b*-jet distinti.
- Categoria 2 b-tag: esattamente due b-jet $\operatorname{con} p_T > 25 \text{ GeV}.$

$m_S \ll m_X - m_H$

- I quark bottom sono **molto collimati**: ricostruiti all'interno di un **unico b-jet**.
- Categoria 1 b-tag: esattamente un b-jet _ $\operatorname{con} p_T > 25 \text{ GeV}.$

- L'analisi seleziona eventi con due fotoni e (almeno) un jet compatibile con l'adronizzazione di un bottom quark (= b-jet)!

Reti neurali parametrizzate (PNN)

• Questa analisi ricerca un segnale $X \to S(\to b\bar{b}) + H(\to \gamma\gamma)$, in un ampio spettro di masse (m_X, m_S) .

Le caratteristiche del segnale (= risoluzione e cinematica delle risonanze $S \rightarrow b\bar{b}$ e $X \rightarrow b\bar{b}\gamma\gamma$) dipendono fortemente da (m_X, m_S) !

• Due PNN separate per le due categorie 2 b-tag e 1 b-tag.

	Caratteristiche dell'evento	Param
2 b-tag	$m_{bb\gamma\gamma}^{*}$ [= $m_{bb\gamma\gamma}$ - ($m_{\gamma\gamma}$ - m_{H}) - (m_{bb} - m_{S})], m_{bb}	
1 b-tag	$m_{bYY}^{*} [= m_{bYY} - (m_{YY} - m_{H})], p_{T}^{b}$	

Strategia di analisi e stima dei fondi

L'analisi definisce una regione di segnale (SR) e una regione di controllo (CR), basandosi sulla massa invariante m_{yy}.

Output della PNN

- Regione della **risonanza** $H \rightarrow \gamma \gamma$. Dove ci si aspetta **eventuale segnale** e **fondi risonanti** (= HH e singolo H).
- Per ciascun punto (m_x, m_s) , un **istogramma** dell'output della PNN viene utilizzato per distinguere il **segnale** dai **fondi**. — Grazie a **bin fini** dove PNN $\approx 1!$
- Dominata dal fondo non risonante fotoni + jets.

Minima contaminazione di segnale e fondi risonanti (= HH e singolo H).

• Funzioni principali:

Controllare l'accordo tra i dati e gli eventi Monte-Carlo (MC) di fondo nello spettro dell'output della PNN.

Fondamentale per la **validazione** della **stima dei fondi**!

- **Normalizzare** il **fondo** γγ+**jets** ai dati.

Strategia di analisi e stima dei fondi

Fondo non risonante fotoni + jets

- $\Rightarrow \gamma \gamma + jet adronici + \gamma + jet e multi-jet (con jet ricostruiti come fotoni).$
 - $\gamma\gamma$ + jet adronici (= componente irriducibile, con fotoni veri) \approx 85 %
 - γ + jet e multi-jet (= componente riducibile, con fotoni *fake*) \approx 15 %
- Eventi MC yy + jet usati per modellizzare il fondo non risonante (compresa la componente riducibile).

- Errori di modellizzazione dell'output della PNN coperti da incertezze sistematiche. • Fattore di normalizzazione $\gamma\gamma$ (\approx 15%) libero nel fit tiene conto del contributo della componente γ + jet e multi-jet.
- Distribuzioni delle variabili di input della PNN e dell'output della PNN per la componente irriducibile e per la componente riducibile sono compatibili!

Fondi risonanti HH $\rightarrow b\bar{b}\gamma\gamma \in H \rightarrow \gamma\gamma$

- Distribuzione dell'output della PNN + normalizzazione stimati con simulazioni MC e predizioni teoriche delle **sezioni d'urto** secondo il **SM**.
- Incertezze sistematiche coprono eventuali errori di modellizzazione.

Events

Risultati: fit segnale + fondo e significanza

- dell'output della PNN nei dati.
- Per gran parte dei punti (**m_x,m_s**), i **dati** sono **compatibili** con l'**ipotesi di solo fondo**.

Elena Mazzeo

• Per ciascun punto (m_x,m_s) nel piano, la presenza di un segnale viene testata da un fit segnale + fondo sulla distribuzione

- Interessante eccesso di segnale rispetto al fondo **atteso** intorno a (**m**_X,**m**_S) = (575, 200) GeV!
- Significanza locale (globale) di 3.5σ (2.0 σ).

Risultati: limiti superiori su $\sigma(pp \rightarrow X) \times BR(X \rightarrow SH \rightarrow bb\gamma\gamma)$

- Assenza di eccessi di segnale rispetto al fondo atteso significativi (> 5 σ). $\stackrel{\smile}{\sim}$
- probabilita' di decadimento $X \to SH \times S \to b\bar{b} \times H \to \gamma\gamma$. $\equiv \sigma(pp \to X) \times BR(X \to SH \to b\bar{b}\gamma\gamma)!$

Nel piano $(\mathbf{m}_{\mathbf{X}}, \mathbf{m}_{\mathbf{S}})$.

• I risultati sono interpretati in termini di limiti superiori sulla sezione d'urto di produzione $pp \rightarrow \mathbf{X}$ moltiplicata per la

Conclusioni

LHC (= 140 fb⁻¹)!

- particelle scalare (oltre al bosone di Higgs con $m_H = 125$ GeV) sono ancora da scoprire!
- - **Diversa** dalle **tradizionali** analisi $H \rightarrow \gamma \gamma$ in **ATLAS**, che si basano su $m_{\gamma\gamma}$ come discriminante finale (vedi presentazione di Laura)!
 - Permette di **massimizzare** la **sensitività al segnale**, sfruttando le informazioni di tre risonanze (= $H \rightarrow \gamma \gamma$, $\mathbf{S} \rightarrow \mathbf{b}\bar{\mathbf{b}}$, $\mathbf{e} X \rightarrow b\bar{b}\gamma\gamma$).

Elena Mazzeo

• Abbiamo presentato la ricerca di una nuova risonanza scalare X, che decade in una nuova particella scalare più leggera S e in un bosone di Higgs H, nello stato finale con due fotoni e due quark bottom nei dati raccolti da ATLAS durante il Run 2 di

La **fenomenologia** $pp \rightarrow \mathbf{X} \rightarrow \mathbf{S}(\rightarrow \mathbf{b}\bar{\mathbf{b}}) + \mathbf{H}(\rightarrow \gamma\gamma)$ @ LHC e' prevista da numerose estensioni del SM, in cui ulteriori Copre regione finora • L'analisi ricerca un segnale $X \to S(\to b\bar{b}) + H(\to \gamma\gamma)$ in un ampio spettro di masse (m_X, m_S) . \longrightarrow inesplorata dello spazio delle fasi!

• L'analisi sfrutta una strategia di modellizzazione innovativa, in cui la variabile discriminante finale e' l'output di una PNN.

• Per gran parte dei punti (m_x,m_s), i dati sono compatibili con l'ipotesi di solo fondo, e i risultati sono stati interpretati in termini di limiti superiori su $\sigma(\mathbf{pp} \to \mathbf{X}) \times \mathbf{BR}(\mathbf{X} \to \mathbf{SH} \to \mathbf{b}\bar{\mathbf{b}}\gamma\gamma)$. \longrightarrow Nessun indizio significativo di nuova fisica! Interessante eccesso di segnale rispetto all'ipotesi di solo fondo intorno a $(m_X, m_S) = (575, 200)$ GeV, con significanza

Grazie per l'attenzione!

Interpolazione del segnale nel piano (m_X, m_S)

- Nella pratica:
- 1. Si sceglie una **griglia molto fitta** di punti (**m_x,m_s**) nel piano.
- 2. Per ciascun punto $(\mathbf{m}_{\mathbf{X}}, \mathbf{m}_{\mathbf{S}})$, si costruisce un istogramma dell'output della PNN in quel punto per i fondi (fotoni + jet, HH $\rightarrow b\bar{b}\gamma\gamma$, e H $\rightarrow \gamma\gamma$) per il segnale, e per i dati nella SR e CR.
- 3. Si testa la presenza del segnale con masse (m_{χ}, m_{S}) da un fit **segnale** + **fondo** sui **dati**.
- Griglia scelta in modo da **non avere "buchi"**, per i quali la **PNN nei** punti vicini non e' sensibile ad un segnale.

- O Per costruzione, e' possibile valutare la PNN per i fondi per qualsiasi punto (m_X, m_S) del piano!
- Interpolazione del segnale (= costruire istogrammi dell'output della PNN per punti in cui **non sono disponibili MC** di segnale **dedicati**).

• Grazie all'utilizzo della PNN, l'analisi e' sensibile ad un segnale $X \to S(\to b\bar{b}) + H(\to \gamma\gamma)$ in maniera continua nel piano

bidimensionale (m_X, m_S) . \longrightarrow La PNN in un punto (m_X, m_S) e' sensibile anche a segnali masse (m_X^*, m_S^*) "nelle vicinanze".

- Punti $(\mathbf{m}_{\mathbf{X}}, \mathbf{m}_{\mathbf{S}})$ per i quali viene direttamente testata la presenza del segnale da un fit segnale + fondo (= 360 punti!).
- Grazie alla PNN, la presenza di un segnale nell'intervallo di interesse emergerebbe comunque dall'analisi dei punti $(\mathbf{m}_{\mathbf{X}},\mathbf{m}_{\mathbf{S}})$ direttamente testati.

Incertezze sistematiche e modello statistico

Tutti gli ingredienti dell'analisi (= stima del segnale e dei fondi nello spettro output della PNN + incertezze sistematiche) vengono inclusi nel **modello statistico** (descritto con una funzione di likelihood).

Regione di controllo

- $N_i^p(\theta)$ = numero di eventi atteso del processo p, che contribuisce nella regione j (= CR o SR). Se p = segnale: $N_i^{\text{segnale}}(\mu, \theta) = \mu \cdot N_i^{\text{segnale}}(\theta)$, dove il fattore di normalizzazione μ e' libero (nel fit segnale + fondo).
- $f_i^p(\theta)$ = numero di eventi atteso del processo p nel bin i dell'output della PNN nella SR (normalizzato a 1).

Elena Mazzeo

Regione di segnale

μ^{γγ} = fattore di normalizzazione del fondo fotoni + jets.
 θ = "nuisance parameters", con cui si parametrizzano le incertezze sistematiche sulla normalizzazione e sulla distribuzione della PNN.

= termine gaussiano, che penalizza configurazioni in cui i parametri di disturbo θ sono molto diversi dal valore nominale.

Ricerca di $\mathbf{X} \rightarrow \mathbf{S}(\rightarrow \mathbf{b}\bar{\mathbf{b}}) + \mathbf{H}(\rightarrow \gamma\gamma)$

14