

## MISURA DELLE PROPRIETÀ CP E **ACCOPPIAMENTI ANOMALI DEL BOSONE DI** HIGGS

### Federica De Riggi

<sup>1</sup>INFN Roma-1, Roma, Italy Sapienza, Università Roma1

In rappresentanza della collaborazione CMS

## Incontri di fisica delle alte energie **Firenze - 2024**

















Particella scalare neutra  $J^{PC} = 0^{++}$ L'ipotesi si una particella pseudoscalare è stata esclusa al 99.95%

<u>Ref</u>



**Objettivo:** essere sensibili ad accoppiamenti anomali BSM (Beyond **Standard Model**)



### Che fine ha fatto l'antimateria?

L'asimmetria tra la materia e l'antimateria implica violazione CP. Lo Standard Model (SM) può spiegare solo parzialmente la violazione di CP necessaria  $\rightarrow$  cerchiamo altre fonti di violazione







## ACCOPPIAMENTI BSM HVV







Approccio AC (Anomalous Coupligs)  $a_i^{ZZ} = a_i^{WW}$ 4 accoppiamenti anomali  $a_2(CP)$   $a_3(CP)$   $a_{\Lambda_1}(CP)$  $a_{\Lambda_1}^{Z\gamma}(CP)$ 



# ACCOPPIAMENTI BSM HVV



FRAZIONE SEZIONE D'URTO EFFETTIVA  $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{j=1,2,3,\Lambda_1} |a_j|^2 \sigma_j} \qquad \phi_{ai} = \arg(\frac{a_i}{a_1})$ 

$$f_{ai} = f_{a2}$$
,  $f_{a_3}$ ,  $f_{\Lambda_1}$ ,  $f_{\Lambda_1}^{Z\gamma}$ 

 $\sigma_i$  cross section dei processi con  $a_i = 1$ 











# ACCOPPIAMENTI BSM Hff

 $\tilde{\psi}_{f}, \psi_{f} \rightarrow \text{Spinori di Dirac}$   $m_{f} \rightarrow \text{massa fermione}$   $v \rightarrow \text{valore di aspettazione del vuoto}$   $k_{f} \rightarrow \text{modificatore dell accoppiamento di}$ Yukawa CP pari **(SM :**  $k_{f} = 1$ )  $\tilde{k}_{f} \rightarrow \text{modificatore dell'accoppiamento di}$ Yukawa CP dispari **(SM :**  $\tilde{k}_{f} = 0$ )

## FRAZIONE SEZIONE D'URTO EFFETTIVA

$$f_{CP}^{Hff} = \frac{|\tilde{k}_f|^2}{|k_f|^2 + |\tilde{k}_f|^2} sign\left(\frac{\tilde{k}_f}{k_f}\right)$$

 $\alpha^{Hf}$ 



$$f = tan^{-1} \left(\frac{\tilde{k}_f}{k_f}\right)$$





| Canale                    | Misura  |
|---------------------------|---------|
| ttH [H]→ γγ               | Hff     |
| H → ZZ                    | HVV,Hff |
| $H \rightarrow \tau \tau$ | HVV,Hff |

| Combinato con                                | REF                                 |
|----------------------------------------------|-------------------------------------|
|                                              | <u>Phys. Rev. Lett. 125, 061801</u> |
| $H \rightarrow \chi \chi$                    | <u>Phys.Rev.D 104 (2021) 5, 0</u>   |
| $H \rightarrow ZZ + H \rightarrow \tau \tau$ | <u>Phys. Rev. D 108 (2023) 03</u>   |







| Canale                    | Misura  | Combinato con                                | REF                                 |
|---------------------------|---------|----------------------------------------------|-------------------------------------|
| ttH [H]→ γγ               | Hff     |                                              | <u>Phys. Rev. Lett. 125, 061801</u> |
| H → ZZ                    | HVV,Hff | $H \rightarrow \chi \chi$                    | <u>Phys.Rev.D 104 (2021) 5, 0</u>   |
| $H \rightarrow \tau \tau$ | HVV,Hff | $H \rightarrow ZZ + H \rightarrow \tau \tau$ | <u>Phys. Rev. D 108 (2023) 03</u>   |

"Measurements of ttH production and the CP structure of the Yukawa interaction between the Higgs boson and the top quark in the diphoton decay channel"







- Prima osservazione dell'accoppiamento Htt in un singolo canale di decadimento
- Prima analisi della struttura CP in ttH



- BDT BKG per distinguere tra eventi ttH e fondo ( $\gamma\gamma$ +j / tt + $\gamma\gamma$ )
- Ulteriore categorizzazione usando variabili MELA (Matrix Element Likelihood Analysis)

$$D_{alt}(\Omega) = \frac{P_{SM}(\Omega)}{P_{SM}(\Omega) + P_{alt}(\Omega)} \qquad D_{0^{-}}(\Omega) = \frac{P_{SM}(\Omega)}{P_{SM}(\Omega) + P_{0^{-}}(\Omega)}$$



 $\Omega$  = informazioni cinematiche alt = ipotesi alternative









Le categorie sono state definite usando l'output del BDT (BDT bkg) e  $D_0^$ massimizzando a sensibilità dell'analisi a contributi anomali











| Canale                    | Misura  | Combinato con                                | REF                                 |
|---------------------------|---------|----------------------------------------------|-------------------------------------|
| ttH [H]→ γγ               | Hff     |                                              | <u>Phys. Rev. Lett. 125, 061801</u> |
| H → ZZ                    | HVV,Hff | $H \rightarrow \chi \chi$                    | <u>Phys.Rev.D 104 (2021) 5, 0</u>   |
| $H \rightarrow \tau \tau$ | HVV,Hff | $H \rightarrow ZZ + H \rightarrow \tau \tau$ | <u>Phys. Rev. D 108 (2023) 03</u>   |

"Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final

- state"







- 1. Canali considerati: 2e2µ, 4µ e 4e nel decadimento dell'Higgs
- 2. Variabili MELA per distinguere segnale da fondo
- 3. Definizione di categorie specifiche per diversi accoppiamenti anomali e diverse interazioni HVV e Hff





Fix others: solo un  $f_{ai} \neq 0$ ; gli altri fissati a 0 Floating others:  $f_{ai} \neq 0$ ; gli altri liberi di variare





Scan 2D con 2 accoppiamenti anomali liberi



Expected Observed Fix Others :  $f_{a3}$   $0.4^{+4.4}_{-0.7} \times 10^{-4}$   $(0 \pm 8) \times 10^{-4}$ 





<u>Loop ggH dominato dal</u> <u>t-quark</u>

$$|f_{CP}^{\rm Hff}| = \left(1 + 2.38 \left[\frac{1}{|f_{a3}^{\rm ggH}|} - 1\right]\right)^{-1}$$

limite sull'accoppiamento Htt usando i metodi di produzione ttH & Hgg

$$f_{CP}^{Htt}$$

ggH & tH & t $\overline{t}$ H (H  $\rightarrow$  44





Expected Observed 
$$\ell \& \gamma \gamma$$
  $-0.04^{+0.38}_{-0.36}$   $-0.0 \pm 0.3$ 





| Canale                    | Misura  |
|---------------------------|---------|
| ttH [H]→ γγ               | Hff     |
| H → ZZ                    | HVV,Hff |
| $H \rightarrow \tau \tau$ | HVV,Hff |

"Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the  $\tau\tau$  final state"



## **ON SHELL H-\tau\tau** accoppiamento HVV & Htt

**Canali considerati:**  $\tau_h \tau_h, \mu \tau_h, e \tau_h, e \mu$ 



 $f_{a3}$ 









- presentati dall'esperimento CMS
- Un campo in forte crescita con recenti novità e possibilità di nuove interpretazione

Gli studi sugli accoppiamenti anomali sono fondamentali per capire la natura del bosone di Higgs Sono state trattate le analisi con i limiti più stringenti alla violazione CP e agli accoppiamenti anomali

Analisi limitate dalle incertezze statistiche perciò ci aspettiamo dei miglioramenti dall'aumento di dati





- presentati dall'esperimento CMS
- Un campo in forte crescita con recenti novità e possibilità di nuove interpretazione

Gli studi sugli accoppiamenti anomali sono fondamentali per capire la natura del bosone di Higgs Sono state trattate le analisi con i limiti più stringenti alla violazione CP e agli accoppiamenti anomali

Analisi limitate dalle incertezze statistiche perciò ci aspettiamo dei miglioramenti dall'aumento di dati

Grazie dell'attenzione











interpretazione in termini di accoppiamento





### Il canale di produzione può essere sfruttato per l'analisi dell'accoppiamento Hgg

 $f_{a3}^{ggH}$ 





Observed

 $0 \pm 1$ 



## ACCOPPIAMENTI BSM Hff



|    |  |   | Ľ |
|----|--|---|---|
|    |  |   |   |
|    |  |   |   |
|    |  |   | , |
| ۰. |  | r |   |