

Incontri di Fisica delle Alte Energie

Ricerca di Vector-Like quark ad LHC con l'esperimento CMS

CARLO DI FRAIA¹, on behalf of the CMS Collaboration

¹ Università degli Studi di Napoli "Federico II" e INFN Napoli

Firenze, 3-5 Aprile 2024 Istituto degli Innocenti, Piazza SS Annunziata

Fisica Beyond Standard Model

Il Modello Standard (MS) si vanta di numerose conferme sperimentali, tra cui la scoperta del Bosone di Higgs (H) a LHC (2012)

Restano ancora degli interrogativi, ad esempio Gravità, Dark Matter, problema della gerarchia, fine-tuning

Necessità di scenari di fisica Beyond Standard Model (BSM):

• Compositeness: Higgs inteso non come particella elementare ma come oggetto composito.

• **Two-Higgs-Doublet Model (2HDM)**: più semplice estensione non triviale del settore dell'Higgs che prevede la presenza di cinque stati scalari (h, H^0, H^{\pm}, A)

Una caratteristica che accomuna tali modelli è la presenza di ipotetici nuovi fermioni vettoriali, ovvero Vector-Like Quark (VLQ)

Vector-Like Quark

Fermioni **colorati** con **spin** ½ e **massa** dell'ordine del **TeV**

Anche la componente right-handed è coinvolta nei processi di corrente debole **carica**:

$$J^{\mu^{+}} = J_{L}^{\mu^{+}} + J_{R}^{\mu^{+}} = \bar{u}_{L}\gamma^{\mu}d_{L} = \bar{u}\frac{1}{2}\gamma^{\mu}(1-\gamma^{5})d \quad \to \quad (V-A)$$

Beyond Standard Model:

$$J^{\mu^+} = J_L^{\mu^+} + J_R^{\mu^+} = \bar{u}_L \gamma^{\mu} d_L + \bar{u}_R \gamma^{\mu} d_R = \bar{u} \gamma^{\mu} d \longrightarrow \mathbf{V}$$

Non acquistano **massa** mediante *Yukawa coupling* con il campo di Higgs: la loro massa si presenta come un **parametro libero** della teoria, dunque $-M\overline{\psi}\psi$ è gauge invariante.

Ad LHC possono essere prodotti nelle collisioni **p-p** a **13 TeV**: produzione **singola** per via *elettrodebole o* **pair**-production per via *forte*

Searches

□ VLQ previsti in **singoletti** (T, B) o **doppietti** (T B), ammettono decadimenti in oggetti Standard Model

Canali di decadimento:

- singoletto: $BR(T \rightarrow bW) = BR(B \rightarrow tW) = 50\%$, $BR(T \rightarrow tH / tZ) = BR(B \rightarrow bW/bZ) = 25\%$
- **doppietto**: $BR(T \rightarrow tH / tZ) = BR(B \rightarrow bW/bZ) = 50\%$

 $T \rightarrow tH \rightarrow t\gamma\gamma$

Produzione elettrodebole di un singolo VLQ T

Produzione e decadimento parametrizzati con Narrow Width Approssimation $\frac{\Gamma}{M_T} \sim 1\%$

Event Selection

Ricostruzione diphoton di *H*: 2 fotoni **prompt**

Quark **top** ricostruito sia nel suo decadimento **leptonico** $(t \rightarrow bW \rightarrow blv)$ sia nel **fully hadronic** $(t \rightarrow bW \rightarrow b\bar{q}q')$

- Evento leptonico: 2 fotoni + 1 elettrone (o 1 muone) + 1 jet b-tagged
- Evento adronico: 2 fotoni + no leptoni + 3 jet (di cui 1 b-tagged)

 $T \rightarrow tH \rightarrow t\gamma\gamma$

Backgrounds:

- Per eventi leptonici, il fondo maggioritario è costituito dai processi Drell-Yan
- Per eventi **adronici**, QCD e $\gamma(\gamma) + jets$ sono il 95% del Bkg
- Fondo comune: produzione SM di H, $t\bar{t}H$

138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) CMS CMS 10 10-¥1. MC Data / Data / 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **BDT-SMH** discriminar BDT-NRB discriminant $\varepsilon_s = 96\%$ $\varepsilon_b = 10\%$ $\varepsilon_{\rm s} = 98\%$ $\varepsilon_h = 10\%$

Segnale:

- Ricerca di un picco risonante nello spettro $m_{\gamma\gamma}$
- **Tecniche Machine Learning**:
- Boosted Decision Trees (BDT) implementati separatamente per SMH leptonico e adronico (BDT-SMH).
- Ulteriore BDT nella selezione adronica, per gli eventi di background non risonanti (BDT-NRB)
- Proprietà cinematiche come variabili di allenamento

 $T \rightarrow tH \rightarrow t\gamma\gamma$

Risultati:

- Ricostruzione della massa invariante di $H \rightarrow \gamma \gamma$, con eccellente risoluzione (1-2%)
- Fit simultaneo (leptonic e hadronic) all'extended maximum likelihood di $m_{\gamma\gamma}$ a diverse ipotesi di massa $m_{T'}$
- Non è stata osservata nessuna deviazione significativa dal fondo SM

Esclusioni:

• L'analisi è riuscita ad **escludere** la presenza di *T* a masse inferiori di **960 GeV**, nell'ipotesi di **NWA** e coupling constant $\kappa_T = 0, 25$

Pair-production $Q\overline{Q}$

□ Ricerca per la pair-production di *T* o *B*

Tre stati finali leptonici:

- Single-lepton channel, 1 leptone
- Dilepton channel (same-sign), 2 leptoni
- Multilepton channel, almeno 3 leptoni

Pair-production $Q\bar{Q}$

□ Single-lepton channel:

- Ampia sensibilità a $T\overline{T} \in B \to tW$
- Scenario: $Q\overline{Q} \rightarrow \begin{cases} 2 t & o & 2 b \\ 2W & o & 2Z & o & 2H \end{cases}$

Stato finale:

- Decadimento leptonico di un $t \circ W$
- Decadimento adronico nello scenario boosted dei restanti oggetti, dunque ricostruiti da jet a grande raggio (almeno 3 jet AK8)

 $Q\bar{Q} = (W/t + AK8) + (AK8 + AK8)$

Machine Learning:

 Multi-layer perceptron per la distinzione di segnale e fondo

Pair-production $Q\overline{Q}$

Dilepton channel same-sign:

• Alta sensitivity per $T \rightarrow tH \rightarrow tWW$ e $B \rightarrow tW$

Multilepton channel:

• Principali contributi da $T \rightarrow tZ$ e $B \rightarrow tW$

Results: il fit simultaneo esclude al 95% T per $m_T < 1,48 TeV$, mentre B per valori di $m_B < 1,12 TeV$

Canali non minimali

Possibile ricerca di VLQ in canali di decadimento che prevedono ulteriori oggetti non SM

❑ CMS-Na work in progress: produzione di un singolo VLQ per via elettrodebole, con A ipotetico bosone Higgslike

Minimal channel: $T \rightarrow tH \rightarrow bl\nu \quad b\bar{b}$ Non-Minimal channel: $T \rightarrow tA \rightarrow bl\nu \quad b\bar{b}$

 Quark top ricostruito nel canale leptonico dalla terna (jet AK4 b-tagged, leptone, MET) mediante Boosted
 Decision Tree: resolved o merged

Bosone H (o A) ricostruito nello scenario boosted, jet AK8

 $T \rightarrow tH/A \rightarrow bl\nu bb$

- Signal region: AK8 b-tagging Tight WP
- Validation region: AK8 b-tagging Loose WP
- Ulteriore suddivisione: Forward and NoForward, muon and electron
- $\Box T \rightarrow tH$ channel:
 - AK8 in finestra di massa [110,140] GeV
 - $m_T \in [600, 1800]$ GeV
- $\Box T \rightarrow tA$ channel:
 - AK8 in finestre di massa attorno al valore nominale
 - *m_T* ∈ [600,3000] GeV
 - $m_A^* \in [25, 250]$ GeV

Fit simultaneo alla massa del VLQ T ricostruito

Conclusioni

Overview sullo stato attuale della ricerca di Vector-Like Quark all'esperimento CMS

□ L'analisi $T \rightarrow tH \rightarrow t\gamma\gamma$ è la più sensibile fino ad oggi **per masse fino a 1.1** *TeV* con questo meccanismo di produzione

□ I limiti ottenuti nella ricerca di pair-production $T\overline{T}$ sono i più forti fino ad oggi per la produzione di coppie con tutte le modalità di decadimento del VLQ T

□ Work in progress: Ricerca di un VLQ T prodotto singolarmente nel canale di decadimento SM $(T \rightarrow tH)$ e non SM $(T \rightarrow tA)$ in un ipotetico bosone Higgs-like

Grazie per l'attenzione

Backup

Vector-Like Quark

	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t') (b')	$\begin{pmatrix} X \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	7/6 1/6 -5/6	2/3 -1/3
\mathcal{L}_Y	$-rac{y_u^i v}{\sqrt{2}} ar{u}_L^i u_R^i \ -rac{y_d^i v}{\sqrt{2}} ar{d}_L^i V_{CKM}^{i,j} d_R^j$	$-\frac{\lambda_u^i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\frac{\lambda_d^i v}{\sqrt{2}} \bar{d}_L^i D_R$	$-\frac{\lambda_u^i v}{\sqrt{2}} U_L u_R^i \\ -\frac{\lambda_d^i v}{\sqrt{2}} D_L d_R^i$	$-rac{\lambda_i v}{\sqrt{2}}ar{u}_L^i U_R \ -\lambda_i v ar{d}_L^i D_R$

 $T \rightarrow tH \rightarrow t\gamma\gamma$

- **C** Fotoni (tools provenienti dalla ricostruzione standard $H \rightarrow \gamma \gamma$):
- Preselezione dei fotoni
- Almeno 2 fotoni passanti la soglia ID MVA

$$\frac{p_T(\gamma_1)}{m_{\gamma\gamma}} > \frac{1}{3} \quad e \quad \frac{p_T(\gamma_2)}{m_{\gamma\gamma}} > \frac{1}{4}$$

• 100 GeV < $m_{\gamma\gamma} < 180$ GeV

Jets:

- $p_T > 25~GeV$ e $|\eta| < 4,5$
- $\Delta R(jet, \gamma \setminus l) > 0,4$
- Per b-jets: algoritmo di b-tagging $\beta = 10\%$ e $|\eta| < 2.5$

Elettroni:

- $p_T > 10~GeV$ e $|\eta| < 2,4$ (esclusi 1,44 < $|\eta| < 1,57$)
- $\Delta R(electron, \gamma) > 0,4$
- Loose ID
- $\Delta M(electron, Z) > 5 \ GeV$

Muoni:

- $p_T > 10~GeV$ e $|\eta| < 2,4$
- Isolation < 0,25
- •Tight ID
- $\Delta R(muon, \gamma) > 0,4$
- $\Delta M(electron, Z) > 5 GeV$
- **Range di massa di T':** [600,625,650,675,700], [800,900,1000], [1100,1200]

Ricostruzione del top:

- Eventi leptonici: conservazione p_T e massa di W
- Eventi adronici: combinazione che minimizza χ^2 in input alla BDT

Pair-production

□ Fit simultaneo alle seguenti variabili: $H_T = \sum p_T^{jet}$, $H_T^{lep} = H_T + \sum p_T^{tight \ lep}$, $S_T = H_T^{lep} + p_T^{miss}$

Queste grandezze stimano l'energia totale dell'evento, tipicamente più grande per processi con VLQ rispetto a fondo SM

□ Selection summary:

Channel	Event selection			
	Overall	CR	SR	
1ℓ	1 tight ℓ	_	_	
	$p_{\mathrm{T}}(\ell) > 55 \mathrm{GeV}$	_	—	
	0 other loose ℓ , $p_{\rm T} > 10 {\rm GeV}$	_	—	
	$p_{\rm T}^{\rm miss} > 50{ m GeV}$	_	—	
	\geq 3 large-radius jets	_	—	
	_	max MLP not VLQ	max MLP is VLQ	
	_		2 VLQ candidates	
SS 2ℓ	2 tight SS ℓ	_	_	
	$p_{\rm T}(\ell) > 40 {\rm GeV}$, 30 GeV	_	—	
	\geq 4 small-radius jets	_	—	
	$M(\ell\ell) > 20 \mathrm{GeV}$	—	—	
	M(ee) outside 76–106 GeV	_	—	
	—	$H_{\mathrm{T}}^{\mathrm{lep}} < 1000\mathrm{GeV}$	$H_{\mathrm{T}}^{\mathrm{lep}} > 1000\mathrm{GeV}$	
3ℓ	$p_{\rm T}(\ell) > 30 { m GeV}$	_	_	
	$M(\text{OSSF }\ell\ell) > 20 \text{GeV}$	_	—	
	$p_{\rm T}^{ m miss} > 20 { m GeV}$	_	—	
	\geq 1 b-tagged jet	_	—	
	$p_{\rm T}$ (b jet) > 45 GeV	_	—	
	_	3 loose ℓ	\geq 3 tight ℓ GeV	
	_	2 small-radius jets	\geq 3 small-radius jets	

Canale non minimale

Jets:

- almeno 1 AK4 con $p_T > 30 \; GeV$
- Forward jet: tight id, $p_T > 30 \ GeV$, $2,4 < |\eta| < 4$
- b-jet: DeepFlavour b input alla BDT

🖵 MET > 25 GeV

Jet AK8:

•Almeno un jet Ak8 con $p_T > 500 \; GeV$ e 60 $GeV < m < 220 \; GeV$

Elettroni:

- **Tight**: Tight mva id, $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$
- **Loose**: loose mvs id, $p_T > 10 \text{ GeV}$, $|\eta| < 2,5$, $|d_{xy}| < 0,05 \text{ cm}$

Muoni:

- Tight: TightId, $p_T > 30 \; GeV$, $|\eta| < 2,4$, Iso04 < 0,15
- Loose: Looseld, $p_T > 10 \ GeV$, $|\eta| < 2,4$, $|d_{xy}| < 0,05 \ cm$