Ricerca di Settori Oscuri e di Fotoni Oscuri che decadono in jet leptonici con l'esperimento ATLAS

Bernardo Ricci IFAE 2024, Firenze

EXPERIMENT

Settori Oscuri attraverso i portali

IFAE 3-5/04/2024

- Possibilità investigata: la Materia Oscura può essere costituita da un intero Settore Oscuro di particelle
- Modello minimale di Settore Oscuro: $U(1)_d$ spontaneamente rotto da un meccanismo di Higgs Oscuro -> interazione a corto raggio, il **Fotone Oscuro** γ_d può essere massivo e decadere
- Assunzione minima: è necessaria l'esistenza di un portale vettore (*c*) tra il Settore Oscuro e il Modello Standard

Settori Oscuri attraverso i portali

- Possibilità investigata: la Materia Oscura può essere costituita da un intero Settore Oscuro di particelle
- Modello minimale di Settore Oscuro: $U(1)_d$ spontaneamente rotto da un meccanismo di Higgs Oscuro -> interazione a corto raggio, il **Fotone Oscuro** γ_d può essere massivo e decadere
- Assunzione minima: è necessaria l'esistenza di un portale vettore (ϵ) tra il Settore Oscuro e il Modello Standard • II $BR(H \rightarrow und) < 11\%$ —> II bosone di Higgs può decadere in particelle del Settore Oscuro attraverso il portale di
- Higgs

IFAE 3-5/04/2024

ATLAS è un rivelatore di particelle 'multifunzione' impiegato al Large Hadron Collider (LHC) al CERN Durante il Run 2 di LHC (2015-2018) ATLAS ha raccolto collisioni p-p corrispondenti ad un'energia nel centro di massa pari a $\sqrt{s} = 13$ TeV.

Pseudorapidità

$$\eta = -\ln(\tan -$$

Distanza tra due oggetti $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

Momento trasverso $p_{\rm T} = \sqrt{p_x^2 + p_v^2}$

ATLAS è un rivelatore di particelle 'multifunzione' impiegato al Large Hadron Collider (LHC) al CERN Durante il Run 2 di LHC (2015-2018) ATLAS ha raccolto collisioni p-p corrispondenti ad un'energia nel centro di massa pari a $\sqrt{s} = 13$ TeV.

IFAE 3-5/04/2024

Decadimenti "prompt" del Fotone Oscuro

Analisi in corso: decadimento prompt —> II Fotone Oscuro decade nell'ID

Parametri liberi del Settore Oscuro:

- $BR(H \rightarrow und)$ influisce sul numero di eventi
- ϵ influisce su dove decade il Fotone Oscuro ($\tau_{\gamma_d} \propto \epsilon^{-2}$)
- m_{γ_d} determina il *BR* del γ_d in particelle del Modello Standard

IFAE 3-5/04/2024

FRVZ e HAHM

IFAE 3-5/04/2024

Considerati solo decadimenti leptonici

FRVZ e HAHM

IFAE 3-5/04/2024

Jet Leptonici

IFAE 3-5/04/2024

Considerati solo decadimenti leptonici

 $\gamma_d \rightarrow \mu^+ \mu^- e \gamma_d \rightarrow e^+ e^-$ I prodotti di decadimento sono estremamente collimati -> Jet Leptonici (LJ) eLJ 1. \geq 1 elettrone ricostruito con \geq 2 tracce associate in un cono $\Delta R = 0.4$ 2. \geq 2 elettroni ricostruiti in un cono $\Delta R = 0.4$ μLJ eLJ con 1 elettrone eLJ con 2 elettroni μ LJ \geq 2 muoni e nessun elettrone in un cono $\Delta R = 0.4$

Strategia di analisi

Analisi su dati di **Run-2** (2015-2018)

3 canali di studio -> 3 **regioni di segnale (SR)** Valutazione dei fondi -> 3 regioni di controllo (CR) -> DATA DRIVEN

IFAE 3-5/04/2024

Più dettagli in <u>backup</u>

10

Modelling canale misto

Ottima risoluzione su $m_{\mu LJ} \rightarrow bump-hunting su m_{\mu LJ}$

 $f(m_{\mu\mu})$: modelling della forma del segnale (in SR dai MC) a.u. $f(m_{\mu\mu})$: <u>Acceptance X Efficiency</u> (in SR dai MC) $B(m_{\mu\mu})$: modelling della forma del fondo (in CR nei dati) $B(m_{\mu\mu})$: estratta da SR nei dati (dopo unblinding -> vedere dati veri in SR)

Più dettagli in <u>backup</u>

IFAE 3-5/04/2024

 $m_{\mu\mu}$

Limiti attesi: $BR(H \rightarrow 2\gamma_d + X)$

- Limite superiore atteso su $BR(H \rightarrow 2\gamma_d + X)$ al 95% CLs
- Risonanze verranno vetate
- Fit con 1000 eventi
- Eventi attesi: ~100 eventi (da <u>estrapolazione dati di Run-1</u>)
- Limiti Run-1[https://arxiv.org/abs/1511.05542]: fino a 2 GeV, solo per FRVZ

IFAE 3-5/04/2024

Limiti attesi: confronto tra i tre canali - FRVZ

- Canale elettronico: $m_{\gamma_d} < 240 \text{ MeV}$
- Canale muonico e misto: $m_{\gamma_d} > 240 \text{ MeV}$

IFAE 3-5/04/2024

Conclusioni

- Estensione del limite sul $BR(H \rightarrow 2\gamma_d + X)$ per m_{γ_d} più alte rispetto a Run-1
- Run-1[<u>https://arxiv.org/abs/1511.05542</u>]: limiti fino ad un $BR(H \rightarrow 2\gamma_d + X) = 0.1 \%$ \bullet
- Prima analisi prompt per modello HAHM

Prossimi step dopo unblinding:

- Estrapolazione limiti veri $BR(H \rightarrow 2\gamma_d + X)$
- Life-time re-weighting \bullet
- Combinazione dei tre canali e interpretazione portale vettore

14

GRAZIE PER L'ATTENZIONE

Bibliografia

- A.F. et al., Hidden Higgs Decaying to Lepton Jets [https://arxiv.org/abs/1002.2952]
- •D.C. et al., Dark Photons with High-Energy Colliders [<u>https://arxiv.org/abs/1412.0018</u>]
- P.I. et al., Serendipity in dark photon searches [https://arxiv.org/abs/1801.04847]
- detector [https://arxiv.org/abs/1511.05542]
- R.L. Workman et al., Review of Particle Physics [PTEP 2022 (2022) 083C01]
- [https://cds.cern.ch/record/2870215]

•Atlas Collaboration, A search for prompt lepton-jets in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS

•Tech. rep. Geneva: CERN, Search for light long-lived neutral particles from Higgs boson decays via vector-boson-fusion production from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

IFAE 3-5/04/2024

Backup

16

FRVZ

					HAHM				
$m_H \; [\text{GeV}]$	number of γ_D	$m_{\gamma_D} [\text{GeV}]$	m_{HLSP} [GeV]	$m_{f_d} \; [\text{GeV}]$			5 a b a		
125	2	0.017	2	5	$m_H [\text{GeV}]$	number of γ_D	m_{γ_D} [Ge]		
125	2	0.03	2	5	125	2	0.017		
125	2	0.06	2	5	105	-	0.01		
125	2	0.1	2	5	125	2	0.01		
125	2	0.24	2	5	125	2	0.4		
125	2	0.4	2	5	195	9	9		
125	2	0.9	2	5	120				
125	2	2	2	10	125	2	10		
125	2	6	4	25	125	2	15		
125	2	10	6	35	105	-	20		
125	2	15	10	45	125	2	25		
125	2	25	10	45	125	2	40		
125	2	40	7	55					

IFAE 3-5/04/2024

Efficienza di ricostruzione µLJ

μLJ reco eff

2

З

 $\gamma_d \eta$

Figure 5.2: The reconstruction efficiency for μ LJ produced by the decay of γ_d according to the FRVZ model. (a) shows the efficiency as a function of the transverse momentum of the γ_d . (b) shows the reconstruction efficiency as a function of the dark photon η , while (c) shows the reconstruction efficiency as a function of the opening angle ΔR between its decay products.

IFAE 3-5/04/2024

(c)

Bernardo Ricci

18

Efficienza di ricostruzione eLJ

as true γ_d . Figure (b) shows the reconstruction efficiency for γ_d as a function of the pseudorapidity.

IFAE 3-5/04/2024

Figure 5.5: The reconstruction efficiency for eLJs produced by the decay of γ_d into e^+e^- . Figure (a) shows the reconstruction efficiency for γ_d as a function of the transverse momentum, input to the MC generation and referred to

Numero di elettroni nei eLJ

Figure 5.4: (a) Number of calorimeter clusters in *e*LJ as a function of ΔR between truth electrons. Number of (b) associated and (c) non-associated tracks in eLJ, as a function of ΔR between truth electrons. These plots are produced from a signal sample with a dark photon mass of 0.1 GeV.

IFAE 3-5/04/2024

Preselezione e strategia di trigger

- Preselezione degli eventi:
 - L'evento deve essere nella GRL + presenza di almeno un "good primary vertex"
 - Ricostruzione di almeno 2 LJ
 - Passare strategia di trigger
 - Trigger matching
- ° 1 μ LJ + 1eLJ —> OR logico di trigger di **singolo elettrone**, **di-muon** e **trigger misti** e- μ

Туре	Data-taking periods	Trigger			
		HLT_e24_lhmedium_L1EM20VH			
	2015	HLT_e60_lhmedium			
Single electron		HLT_e120_lhloose			
Single-election		HLT_e26_lhtight_nod0_ivarloose			
	2016 A-end	HLT_e60_lhmedium_nod0			
		HLT_e140_lhloose_nod0			
	2015	HLT_mu18_mu8noL1			
	2015 - 2016 A	HLT_2mu10			
Di-muon	2016 A - E	HLT_mu20_mu8noL1			
	2016 B - end - 2017 - 2018	HLT_2mu14			
	2016 F - end - 2017 -2018	HLT_mu22_mu8noL1			
	2015	HLT_e7_lhmedium_mu24			
	2015	HLT_e17_lhloose_mu14			
Electron-muon	2016 - 2017 -2018	HLT_e17_lhloose_nod0_mu14			
	2016 A	HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1			
	2016 B-E	HLT_e7_lhmedium_nod0_mu24			
	2016 F-end	<pre>HLT_e26_lhmedium_nod0_L1EM22VHI_mu8noL1</pre>			
	2017-2018	HLT_e26_lhmedium_nod0_mu8noL1			

IFAE 3-5/04/2024

Massa invariante µLJ

- μ LJ sempre con 2 muoni: massa invariate con i muoni ricostruiti
- Buona risoluzione della massa invariante (come nel canale muonico)

IFAE 3-5/04/2024

22

Massa invariante eLJ

- eLJ con 1 elettrone: massa invariate ricostruita dalle tracce:
 - 1. Traccia best-matched con stessa carica dell'elettrone
 - 2. Traccia con carica opposta con più alto $p_{\rm T}$
- eLJ con 2 elettroni: massa invariate dagli elettroni ricostruiti

IFAE 3-5/04/2024

23

Massa invariante eLJ: 1 elettrone VS 2 elettroni

eLJ ricostruiti con 1 elettrone per alte m_{γ_d} :

- Due elettroni troppo lontani per ricostruire un eLJ
- Due elettroni sono abbastanza vicini, ma uno fallisce requirements del WP e ISO -> eLJ ricostruito da un elettrone + traccia random

IFAE 3-5/04/2024

Efficienze di trigger e Trigger matching

Tune	Data taking periods	Trigger								
Туре	Data-taking perious					-RVZ				
		HLI_e24_Inmedium_LIEM20VH								
	2015	HLT_e60_1hmedium		240 MeV	400 MeV	900 MeV	2 GeV	$ \begin{array}{r} 6 \text{ Ge} \\ 13 & 0.94 \pm \\ 27 & 1.00 \pm \\ 08 & 0.926 \pm \\ 06 & 0.830 \pm \\ 05 & 0.863 \pm \\ 034 & 0.907 \pm \\ \hline \hline 034 & 0.907 \pm \\ \hline \hline \hline $		
Single-electron		HLT_e120_lhloose	2015	0.64 ± 0.04	0.65 ± 0.06	0.83 ± 0.08	0.86 ± 0.13	$0.94 \pm$		
Single election		HLT_e26_lhtight_nod0_ivarloose	2016 A	0.70 ± 0.09	0.69 ± 0.19	$1.00^{+0.00}$	0.67 ± 0.27	1 00 +		
	2016 A-end	HLT_e60_lhmedium_nod0	2016 B-F	0.505 ± 0.021	0.09 ± 0.029	0.63 ± 0.05	0.67 ± 0.27 0.60 ± 0.08	$ \begin{array}{r} 6 \text{ Ge} \\ 0.94 \pm \\ 1.00 \pm \\ 0.926 \pm \\ 0.830 \pm \\ 0.863 \pm \\ 0.907 \pm \\ \end{array} $ $ \begin{array}{r} V \\ 0.013 \\ 0 \\ .14 \\ 0.015 \\ 0.004 \\ 0.0025 \\ 0.0030 \\ \end{array} $		
		HLT_e140_lhloose_nod0	2016 E and	0.303 ± 0.021	0.500 ± 0.029	0.05 ± 0.05	0.00 ± 0.00	$0.920 \pm$		
	2015	HLT_mu18_mu8noL1	2010 F-end	0.497 ± 0.013	0.373 ± 0.020	0.081 ± 0.034	0.30 ± 0.00	$0.050 \pm$		
	2015 - 2016 A	HLT_2mu10	2017	0.600 ± 0.013	0.679 ± 0.016	0.733 ± 0.028	0.05 ± 0.05	$0.803 \pm$		
Di-muon	2016 A - E	HLT_mu20_mu8noL1	2018	0.615 ± 0.010	0.681 ± 0.013	0.741 ± 0.022	0.653 ± 0.034	$0.90/\pm$		
	2016 B - end - 2017 - 2018	HLT_2mu14								
	2016 F - end - 2017 -2018	HLT_mu22_mu8noL1	μαμλ							
	2015	HLT_e7_lhmedium_mu24								
	2015	HLT_e17_lhloose_mu14						10 C V		
Electron-muon	2016 - 2017 -2018	HLT_e17_lhloose_nod0_mu14			400 MeV	2 GeV	10 GeV	1		
	2016 A	HLT_e24_lhmedium_nod0_L1EM20VHI_mu8noL1		2015	0.939 ± 0.015	0.86 ± 0.07	0.987 ± 0.000	.013		
	2016 В-Е	HLT_e7_lhmedium_nod0_mu24		2016 A	0.90 ± 0.04	$1.00^{+0.00}$	$1.00^{0.00}$)		
	2016 F-end	HLT_e26_lhmedium_nod0_L1EM22VHI_mu8noL1		2016 B-E	0.824 ± 0.012	0.79 ± 0.04	0.934 ± 0.1	.015		
	2017-2018	HLT_e26_lhmedium_nod0_mu8noL1		2016 F-end	0.863 ± 0.008	0.832 ± 0.023	0.988 ± 0.000	.004		
				2017	0.926 ± 0.005	0.917 ± 0.014	$1 0.9939 \pm 0.000$.0025		
				2018	0.911 ± 0.004	0.869 ± 0.014	$1 0.9882 \pm 0$.0030		

Trigger matching:

- Se trigger di singolo elettrone: trigger matching con almeno un elettrone nel eLJ
- Se di-muon trigger: trigger matching con entrambi i muoni nel μ LJ
- Se e- μ trigger: trigger matching sia l'elettrone che con il muone

IFAE 3-5/04/2024

	FF	RV	'Z	
L				

Strategia di analisi

Risonanze che decadono in coppie di muoni

Simulazioni MC

26

IFAE 3-5/04/2024

μLJ

Regione di segnale

 $1\mu LJ + 1eLJ$

 $\eta | eLJ < 1.37$ $|\Delta \phi| (\mu LJ, eLJ) > 2$ $q_{\rm eLJ}, q_{\mu \rm LJ} = 0$ $p_{\rm T}^{\rm imb}(\mu {\rm LJ}, e{\rm LJ}) < 0.8$

Regione di Controllo

 $1\mu LJ + 0eLJ + 0\mu + 2e$

η ee < 1.37 $|\Delta \phi| (\mu LJ, ee) > 2$ $q_{\mu \text{LJ}} = 0$ $m^{\text{imb}}(\mu \text{LJ}, ee) > 0.6$

Data-driven

Più dettagli in <u>backup</u>

Regione di Segnale e di Controllo

	\mathbf{SR}	
Triggers	single- $e/\text{di}-\mu/e-\mu$	
Segnatura	$1\mu LJ + 1eLJ$	1μ
traccia $p_{\rm T}~e{\rm LJ}$	$> 5 { m GeV}$	
$e { m LJ} \eta $	< 1.37	
$ \Delta \phi (\mu { m LJ}, e { m LJ})$	> 2	
q_{eLJ}	= 0	
$q_{\mu { m LJ}}$	= 0	
$ p_{\mathrm{T}}^{imb} ~(\mu\mathrm{LJ,}e\mathrm{LJ})$	< 0.8	
$m_{imb}(\mu { m LJ},\!e { m LJ})$	/	

IFAE 3-5/04/2024

27

Regione di Segnale

-	m_{γ_d}	240 MeV	400 MeV	900 MeV	2 GeV	6 GeV
-	Triggers	44210 ± 240	41150 ± 230	35090 ± 210	45380 ± 240	49680 ± 250
	1 µLJ, 1 eLJ	3880 ± 70	2470 ± 50	834 ± 32	331 ± 20	711 ± 29
	Trigger matching	3650 ± 70	2370 ± 50	802 ± 31	324 ± 20	698 ± 29
	$eLJ p_T track > 5 GeV$	3630 ± 70	2340 ± 50	795 ± 31	315 ± 20	689 ± 28
ΓΠνζ	$e LJ \eta < 1.37$	2500 ± 60	1670 ± 50	613 ± 27	203 ± 16	501 ± 24
	$ \Delta \phi (\mu LJ, eLJ) > 2$	1750 ± 50	1080 ± 40	354 ± 21	100 ± 11	361 ± 21
	$q_{eLJ} = 0$	1700 ± 50	1070 ± 40	341 ± 21	88 ± 10	341 ± 20
	$q_{\mu \text{LJ}} = 0$	1700 ± 50	1070 ± 40	341 ± 21	88 ± 10	341 ± 20
	$ p_{\rm T}^{imb} < 0.8$	1320 ± 40	793 ± 31	275 ± 19	54 ± 8	323 ± 19
	m	400 MeV	2 GeV	10 GeV		
	$\frac{m\gamma_d}{\text{Triggers}}$	126600 ± 400	$\frac{2001}{0.08570 \pm 350}$	10.001	$\overline{\mathbf{n}}$	
		120000 ± 400 12400 ± 120	1500 ± 300	7100 ± 400	0	
	$I \mu LJ, I e LJ$	12400 ± 120	1300 ± 40	$3/10 \pm 70$		
	Trigger matching	12310 ± 120	1480 ± 40	$3/00 \pm 70$		
	$eLJ p_T$ track > 5 GeV	12270 ± 120	1470 ± 40	3670 ± 70		
НАНМ	$e LJ \eta < 1.37$	8840 ± 110	1080 ± 40	2610 ± 60		
1 17 11 11 11	$ \Delta \phi (\mu LJ, eLJ)>2$	6810 ± 90	625 ± 27	2260 ± 50		
	$q_{eLJ} = 0$	6630 ± 90	581 ± 26	2190 ± 50		
	$q_{\mu \text{LJ}} = 0$	6630 ± 90	581 ± 26	2190 ± 50		
	$ p_{\rm T}^{imb} < 0.8$	5470 ± 80	425 ± 22	2130 ± 50		

IFAE 3-5/04/2024

 $\sigma_{\rm ggF} = 48.51 \,\mathrm{pb}, \,\mathrm{L} = 139 \,\mathrm{fb}^{-1}, \,\mathrm{BR}(H \to 2\gamma_d + X) = 5 \,\%$

Regione di Controllo

	Selection cuts	240 MeV	400 MeV	900 MeV	2 GeV	6 GeV
	Triggers	44210 ± 240	41150 ± 230	35090 ± 210	45380 ± 240	49680 ± 250
	$1 \ \mu \text{LJ}, 0 \ e \text{LJ}, 0 \ \mu, e \ge 2$	9.5 ± 3.4	5.5 ± 2.5	12 ± 4	21 ± 5	650 ± 28
FRVZ	Trigger matching	6.1 ± 2.7	3.4 ± 2.0	7.0 ± 2.9	17 ± 4	579 ± 26
	<i>ee</i> $p_{\rm T}$ track > 5 GeV	6.1 ± 2.7	3.4 ± 2.0	7.0 ± 2.9	15 ± 4	579 ± 26
	$ \Delta \phi (\mu LJ, ee) > 2$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	11.2 ± 3.5	433 ± 22
	$q_{\mu \text{LJ}} = 0$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	11.2 ± 3.5	433 ± 22
	$m_{imb} > 0.6$	2.4 ± 1.7	2.2 ± 1.6	2.4 ± 1.7	6.4 ± 2.6	1.3 ± 0.9

	Selection cuts	400 MeV	2 GeV	10 GeV
	Triggers	126600 ± 400	98570 ± 350	150100 ± 400
	$1 \ \mu LJ, 0 \ e LJ, 0 \ \mu, e \ge 2$	23 ± 5	14 ± 4	3320 ± 60
HAHM	Trigger matching	22 ± 5	10.2 ± 3.4	3250 ± 60
	<i>ee</i> $p_{\rm T}$ track > 5 GeV	22 ± 5	10.2 ± 3.4	3250 ± 60
	$ \Delta \phi (\mu LJ, ee) > 2$	18 ± 5	4.4 ± 2.2	2730 ± 60
	$q_{\mu \text{LJ}} = 0$	18 ± 5	4.4 ± 2.2	2730 ± 60
	$m_{imb} > 0.6$	12 ± 4	4.4 ± 2.2	3.9 ± 2.1

 $\sigma_{\rm ggF} = 48.51 \,\mathrm{pb}, \,\mathrm{L} = 139 \,\mathrm{fb}^{-1}, \,\mathrm{BR}(H \to 2\gamma_d + X) = 5 \,\%$

 $H \rightarrow 2\gamma_d + X) = 5\%$ Bernardo Ricci

Modelling della forma del segnale

Double-Sided Crystal Ball

$$N \cdot \begin{cases} e^{-t^2/2} & \text{if } -\alpha_{\text{low}} \leq t \leq \alpha_{\text{h}} \\ \frac{e^{-0.5\alpha_{\text{low}}^2}}{\left[\frac{\alpha_{\text{low}}}{n_{\text{low}}}\left(\frac{n_{\text{low}}}{\alpha_{\text{low}}} - \alpha_{\text{low}} - t\right)\right]^{n_{\text{low}}}} & \text{if } t < -\alpha_{\text{low}} \\ \frac{e^{-0.5\alpha_{\text{high}}^2}}{\left[\frac{\alpha_{\text{high}}}{n_{\text{high}}}\left(\frac{n_{\text{high}}}{\alpha_{\text{high}}} - \alpha_{\text{high}} + t\right)\right]^{n_{\text{high}}}} & \text{if } t > \alpha_{\text{high}}, \\ t = (m_{\mu\mu} - \mu_{\text{CB}})/\sigma_{\text{CB}} \end{cases}$$

$$n_h = \text{const} = 6$$

 $n_l = \text{const} = 3$

IFAE 3-5/04/2024

Modelling della forma del segnale: FRVZ

31

IFAE 3-5/04/2024

mmInv (GeV)

Estrapolazione dei parametri: FRVZ

IFAE 3-5/04/2024

Modelling della forma del segnale: HAHM

IFAE 3-5/04/2024

Fit DSCB

DSCB estrapolata 2µLJ

DSCB estrapolata μ LJ-eLJ

Estrapolazione dei parametri: HAHM

IFAE 3-5/04/2024

34

Controllare se la resa del segnale "iniettato" è d'accordo con quello fittato

Leggera dipendenza del fit dal modelling (Usando la parametrizzazione del canale muonico)

Mismodelling coperto da incertezza del 5%

IFAE 3-5/04/2024

Acceptance X Efficiency

IFAE 3-5/04/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \frac{\mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e}}{\mathcal{A} \times \epsilon|_{\gamma_d \to 2e}} BR(\gamma_d \to 2\mu)BR(\gamma_d \to 2e) \times 2e$

 $A \times \epsilon$ può cambiare a causa di:

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR dei prodotti di decadimento —> Efficienza di ricostruzione dei LJ
- $p_{\rm T}$ dei leptoni —> accettanza dei triggers

Bernardo Ricci

36

Acceptance X Efficiency: 1 elettrone in eLJ

IFAE 3-5/04/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e} BR(\gamma_d \to 2\mu) BR(\gamma_d \to 2e) \times 2e$

 $A \times \epsilon$ può cambiare a causa di:

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR dei prodotti di decadimento —> Efficienza di ricostruzione dei LJ
- $p_{\rm T}$ dei leptoni —> accettanza dei triggers

Acceptance X Efficiency: 2 elettroni in eLJ

IFAE 3-5/04/2024

$\mathcal{A} \times \epsilon|_{\mu \text{LJ}-e \text{LJchannel}} = \mathcal{A} \times \epsilon|_{\gamma_d \to 2\mu, \gamma_d \to 2e} BR(\gamma_d \to 2\mu) BR(\gamma_d \to 2e) \times 2$

 $A \times \epsilon$ può cambiare a causa di:

- $BR(\gamma_d \rightarrow 2\mu), BR(\gamma_d \rightarrow 2e)$
- ΔR dei prodotti di decadimento —> Efficienza di ricostruzione dei LJ
- $p_{\rm T}$ dei leptoni —> accettanza dei triggers

Modelling della forma del fondo

IFAE 3-5/04/2024

$$\begin{split} B(m_{\mu\mu}) &= \left(1 - f_{\exp} - f_{J/\psi} - f_{\phi(1020)} - f_{\psi(2S)}\right) e^{-m_{\mu\mu}/\tau_2} + f_{\exp} e^{-m_{\mu\mu}/\tau_2} \\ &+ f_{J/\psi} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{J/\psi}}\right)^2} + f_{\psi(2S)} e^{-\left(\frac{m_{\mu\mu} - \mu_{\psi(2S)}}{\sigma_{\psi(2S)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{\phi(1020)}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{\phi(1020)}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{\phi(1020)}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} \\ &+ f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_{J/\psi}}{\sigma_{\phi(1020)}}\right)^2} + f_{\phi(1020)} e^{-\left(\frac{m_{\mu\mu} - \mu_$$

meter	Fitted value
xp	0.08 ± 0.05
$/\psi$	0.021 ± 0.008
Г	$(1.15 \pm 0.08) \text{ GeV}$
2	$(0.14 \pm 0.04) { m ~GeV}$

- Somma di due esponenziali per background non risonante
- Risonanze parametrizzate come gaussiane

 $m_{\mu\mu}$ (GeV)

Incertezze sul modelling del fondo (Spurious Signal)

Scarso fondo -> rischio di segnale indotto (Spurious Signal)

40

Sistematiche dello Spurious Signal calcolate via fit S+B Molto sensibile a fluttuazioni statistiche su template di solo fondo

IFAE 3-5/04/2024

Sistematiche <u>devono essere</u> entro $0.5\sigma_{stat}$

Sistematiche

- Sistematiche su Scale Factors \bullet
- Sistematiche su variabili cinematiche \bullet

m_{γ_d}	triggers	μLJ	μLJ	μLJ	eLJ	eLJ	eLJ	PRW	egamma	egamma	muon	muon	muon	Tota
		reconstruction	isolation	TTVA	reconstruction	ID	isolation		resolution	scale	ID	MS	scale	
(GeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.24	0.77	0.06	1.10	0.04	0.38	0.53	0.07	2.17	0.23	0.29	0.12	0.22	0.12	2.6
0.40	0.49	0.04	1.16	0.04	0.36	0.48	0.06	1.33	0.15	0.01	0.18	0.06	0.35	1.9
0.90	0.63	0.08	1.14	0.07	0.25	0.26	0.03	6.56	0.56	0.58	0.52	0.03	0.04	6.7
2	0.65	0.01	1.00	0.19	0.69	1.33	0.91	7.59	4.75	4.71	0.04	0.03	0.03	10.3
6	1.84	0.10	0.55	0.03	1.37	3.98	2.66	2.66	0.06	0.32	0.32	0.69	0.66	6.0

Table 8.5: Summary table of the systematic uncertainties on FRVZ signal MC events in the μ LJ- eLJ channel.

m_{γ_d}	triggers	μLJ	μ LJ	μ LJ	eLJ	eLJ	eLJ	PRW	egamma	egamma	muon	muon	muon
		reconstruction	isolation	TTVA	reconstruction	ID	isolation		resolution	scale	ID	MS	scale
(GeV)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.40	0.28	0.10	0.53	0.04	0.36	0.25	0.02	0.01	0.04	0.07	0.06	0.06	0.17
2	0.15	0.12	0.56	0.01	0.37	0.26	0.04	3.9	0.02	0.48	0.01	0.00	0.00
10	0.35	0.16	0.28	0.01	1.14	0.42	0.06	0.43	0.04	0.11	0.04	0.00	0.00

Table 8.6: Summary table of the systematic uncertainties on HAHM signal MC events in the μ LJ- eLJ channel.

IFAE 3-5/04/2024

Estrapolazione eventi Run-1 Run-2

Run-1: 7 eventi nei dati Run-2: $\times 7\mathscr{L} \times 2\sigma_{pp} \longrightarrow 100$ eventi attesi

Channel	Background (ABCD-likelihood method)	Background (total)	Observed events in data
eLJ–eLJ	2.9 ± 0.9	4.4 ± 1.3	6
muLJ-muLJ	2.9 ± 0.6	4.4 ± 1.1	4
eLJ-muLJ	6.7 ± 1.4	7.1 ± 1.4	2
eLJ–emuLJ	7.8 ± 2.0	7.8 ± 2.0	5
muLJ-emuLJ	20.2 ± 4.5	20.3 ± 4.5	14
emuLJ-emuLJ	1.3 ± 0.8	1.9 ± 0.9	0

IFAE 3-5/04/2024

Isolamento per coppie di muoni boosted

 μ in μ LJ fails standard iso WP (ptvarcone30) \rightarrow corrected isolation developed

IFAE 3-5/04/2024

- Corrected isolation: as ptvarcone30, removing track belonging to close-by muon (isoCloseByTool) <

Used by <u>HZZ</u> analysis as well!

Efficiency increased up to 90 % !!

Strategia di triggers canale muonico

Туре	Data-taking periods	Trigger
	2015	HLT_mu18_mu8noL1
	2015 - 2016 A	HLT_2mu10
	2016 A	HLT_2mu10_nomucomb
di-muon	2016 A-D3	HLT_mu20_mu8noL1
	2016 B-end - 2017 - 2018	HLT_2mu14
	2016 B-D3	HLT_2mu14_nomucomb
	2016 D4-end - 2017 - 2018	HLT_mu22_mu8noL1
4	2015 - 2016 B-D3 - 2017 - 2018	HLT_3mu6
tri-muon	2015-2018 - all periods	HLT_3mu6_msonly

Table 6.1: List of muon triggers used in the $\mu LJ - \mu LJ$ channel for the corresponding data-taking periods.

Regione di segnale canale muonico

Cuts	$m_{\gamma_d} = 0.24 \text{GeV}$	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 0.9 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 6 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$
None	337900 ± 700	337900 ± 700	337900 ± 700	331200±1100	349300±1000	337800 ± 700	337600 ± 700
$2\mu LJ$	8760±100	11020 ± 120	8650±100	3300 ± 40	422±12	145 ± 14	40 ± 7
Trigger	5080 ± 80	6700 ± 90	5230 ± 80	2482 ± 33	400 ± 12	139±13	40 ± 7
Trigger matching	3460 ± 60	4560 ± 70	3580 ± 70	1839 ± 29	344±11	137±13	37±7
$q_{\mu \mathrm{LJ}} = 0$	3460 ± 60	4560 ± 70	3580 ± 70	1839 ± 29	344±11	137±13	30±6

the FRVZ model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d + X) = 0.05$.

Cuts	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$	$m_{\gamma_d} = 25 \mathrm{GeV}$
None	337800 ± 700	337800 ± 700	337600 ± 700	337600 ± 700	337800 ± 700
$2\mu LJ$	22390 ± 170	19780 ± 160	3490 ± 70	297 ± 20	52 ± 8
Trigger	19920 ± 160	17850 ± 150	3440 ± 70	294 ± 20	52 ± 8
Trigger Matching	17390 ± 150	15610 ± 140	3350 ± 70	289±19	50 ± 8
$q_{\mu \mathrm{LJ}} = 0$	17380 ± 150	15610 ± 140	3350 ± 70	289±19	50 ± 8

the HAHM model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d) = 0.05$.

IFAE 3-5/04/2024

Table 7.1: Signal events remaining after each cut applied in the μ LJ- μ LJ channel. Events are generated according to

Table 7.2: Signal events remaining after each cut applied in the μ LJ- μ LJ channel. Events are generated according to

Regione di controllo canale muonico

Cuts	$m_{\gamma_d} = 0.24 \mathrm{GeV}$	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 0.9 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 6 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$
None	337900±700	337900 ± 700	337900±700	331200±1100	349300±1000	337800 ± 700	337600±700
$1\mu LJ + 0eLJ$	77380 ± 310	89480 ± 340	83170±330	55840 ± 270	21570 ± 150	12530 ± 130	3750 ± 70
Triggers	4970±80	6550 ± 90	6520 ± 90	3330 ± 40	2273±35	3220 ± 60	1510 ± 40
Trigger matching	585 ± 27	1980 ± 50	2810 ± 60	1515 ± 26	1372 ± 24	2430 ± 60	1170 ± 40
Electron veto	581±27	1960 ± 50	2800 ± 60	1508 ± 26	1361±23	2410 ± 60	1170 ± 40
2 signal muons	2.5 ± 1.8	2.7 ± 1.6	$3.0{\pm}1.8$	2.6 ± 1.1	558 ± 14	1190 ± 40	655 ± 28
$\Delta R_{\mu\mu} > 1.8$	2.5 ± 1.8	1.9 ± 1.4	1.3 ± 1.3	1.1 ± 0.6	0.6 ± 0.4	39±7	240±16
$ m^{\rm imb} > 0.2$	2.5 ± 1.8	1.9 ± 1.4	1.3 ± 1.3	1.1 ± 0.6	0.6 ± 0.4	28 ± 6	196±15
$\Delta \phi_{\mu \mathrm{LJ}-\mu\mu} > 2.8$	1.3 ± 1.3	$0.0{\pm}0.0$	1.3 ± 1.3	$0.4{\pm}0.4$	0.27 ± 0.27	0.8 ± 0.8	$0.0{\pm}0.0$
$q_{\mu \text{LJ}} = 0$	$0.0{\pm}0.0$	$0.0{\pm}0.0$	1.3 ± 1.3	$0.0 {\pm} 0.0$	0.27 ± 0.27	$0.0 {\pm} 0.0$	$0.0{\pm}0.0$
-							

Table 7.3: Signal events remaining after each cut applied in the CR of the μ LJ- μ LJ channel. Events are generated according to the FRVZ model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d + X) = 0.05$.

Cuts	$m_{\gamma_d} = 0.4 \mathrm{GeV}$	$m_{\gamma_d} = 2 \mathrm{GeV}$	$m_{\gamma_d} = 10 \mathrm{GeV}$	$m_{\gamma_d} = 15 \mathrm{GeV}$	$m_{\gamma_d} = 25 \mathrm{GeV}$
None	337800 ± 700	337800 ± 700	337600 ± 700	337600 ± 700	337800 ± 700
$1\mu LJ + 0eLJ$	107700 ± 400	115500 ± 400	53910±260	16480 ± 150	3380 ± 70
Trigger	9060±110	9950±110	12770 ± 130	4800 ± 80	1070 ± 40
Trigger matching	3130±60	4300 ± 70	10280 ± 110	4100 ± 70	875±34
Electron veto	3130±60	4290 ± 70	10220 ± 110	4080 ± 70	870±33
2 signal muons	$3.4{\pm}2.0$	6.2 ± 2.6	5730 ± 80	2500 ± 60	505 ± 25
$\Delta R_{\mu\mu} > 1.8$	2.3 ± 1.6	3.5 ± 2.0	8.9 ± 3.0	58±8	144 ± 13
$ m^{imb} > 0.2$	2.3 ± 1.6	3.5 ± 2.0	5.8 ± 2.4	2.3 ± 1.6	3.3 ± 1.7
$\Delta \phi_{\mu \mathrm{LJ}-\mu\mu} > 2.8$	1.3 ± 1.3	2.5 ± 1.8	5.8 ± 2.4	1.0 ± 1.0	1.2 ± 1.2
$q_{\mu \mathrm{LJ}} = 0$	$0.0{\pm}0.0$	$0.0 {\pm} 0.0$	0.0 ± 0.0	1.0 ± 1.0	1.2 ± 1.2

IFAE 3-5/04/2024

Table 7.4: Signal events remaining after each cut applied in the CR of the μ LJ- μ LJ channel. Events are generated according to the HAHM model and are normalized assuming a branching ratio $B(H \rightarrow 2\gamma_d) = 0.05$.

Modelling del segnale canale muonico

extrapolated one (blue).

IFAE 3-5/04/2024

Figure 7.7: μ LJ invariant mass distribution for the FRVZ model, in the μ LJ- μ LJ channel (dots), shown for different γ_d mass: (a) 240 MeV, (b) 400 MeV, (c) 900 MeV, (d) 2 GeV, (e) 6 GeV. The fitted pdf (red) is compared to the

Estrapolazione dei parametri: FRVZ canale muonico

IFAE 3-5/04/2024

Sistematiche canale muonico

m_{γ_d}	Muon	Muon	Momentum	Momentum	Lumi	PRW	Total
	triggers	isolation	resolution	scale			
[GeV]	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.24	1.34	1.03	0.92	0.57	0.83	1.37	2.56
0.40	1.77	1.16	0.91	0.71	0.83	1.46	2.92
0.90	1.47	1.09	0.51	0.20	0.83	1.38	2.49
2	1.45	1.05	0.76	0.43	0.83	1.94	2.89
6	0.67	0.64	0.68	0.64	0.83	1.78	2.35
10	0.13	0.27	0.10	0.11	0.83	2.95	3.07
15	0.10	0.18	-	-	0.83	3.76	3.85

m_{γ_d}	Muon	Muon	Momentum	Momentum	Lumi	PRW	Total
	triggers	isolation	resolution	scale			
[GeV]	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.40	0.62	0.51	0.59	0.35	0.83	0.91	1.60
2	0.58	0.51	0.39	0.17	0.83	0.94	1.51
10	0.17	0.25	0.28	0.23	0.83	0.60	1.11
15	0.1	0.14	-	-	0.83	0.41	0.91
25	0.1	0.14	-	-	0.83	1.55	1.75

Table 6.24. Summary table of the impact of the experimental systematic uncertainties for the HAHM signal samples in the $\mu LJ - \mu LJ$ channel. Uncertainties below the per-mill level are not shown. PRW stands for the uncertainty associated to the PU reweighting.

IFAE 3-5/04/2024

Table 6.23. Summary table of the impact of the experimental systematic uncertainties for the FRVZ signal samples in the $\mu LJ - \mu LJ$ channel. Uncertainties below the per-mill level are not shown. PRW stands for the uncertainty associated to the PU reweighting.

Strategia di triggers canale elettronico

Periods	Single-electron triggers
	HLT_e24_lhmedium_L1EM20VH
2015	HLT_e60_lhmedium
	HLT_e120_lhloose
	HLT_e26_lhtight_nod0_ivarloose
2016-2018	HLT_e60_lhmedium_nod0
	HLT_e140_lhloose_nod0

Table 6.2: Choice of lowest unprescaled single electron trigger list used in the eLJ-eLJ selection and the corresponding data-taking periods.

IFAE 3-5/04/2024

Periods	Di-electron triggers
2015	HLT_2e12_lhvloose_L12EM10VH
2016	HLT_2e17_lhvloose_nod0
2017 (only B5-B8)	HLT_2e24_lhvloose_nod0
2017 (except B5-B8)	HLT_2e17_lhvloose_nod0_L12EM15VHI
2018	HLT_e60_lhmedium_nod0

Table 6.3: Choice of lowest unprescaled di-electron trigger list used in the eLJ-eLJ selection and the corresponding data-taking periods. During the accidentally prescaled periods B5-B8 (runs 326834-328393 with an effective reduction of 0.6 fb-1), HLT_2e24_lhvloose_nod0 is used instead of HLT_2e17_lhvloose_nod0_L12EM15VHI.

Regione di segnale canale elettronico

m_{γ_d} [GeV]	0.017	0.03	0.06	0.1	0.24	0.4	0.9	2	6
2 eLJs	$1900{\pm}22$	$1500{\pm}20$	$1100{\pm}17$	$830{\pm}14$	210 ± 7	54 ± 4	$8.5 {\pm} 1.4$	$1.2{\pm}0.5$	$7.9{\pm}1.3$
Trigger Matched	$1700 {\pm} 20$	$1300{\pm}18$	960 ± 15	730 ± 13	200 ± 7	53 ± 4	8.5 ± 1.4	1.2 ± 0.5	7.5 ± 1.2
Leading track $p_T > 5$ GeV	$1600{\pm}20$	$1300{\pm}18$	940 ± 15	710 ± 13	200 ± 7	53 ± 4	8.1 ± 1.4	$0.9 {\pm} 0.4$	7.2 ± 1.2
$eLJ \eta < 1.5$	1100 ± 16	820 ± 14	610 ± 12	420 ± 10	130 ± 6	$36.0{\pm}2.9$	5.6 ± 1.1	$0.38 {\pm} 0.27$	$4.8 {\pm} 1.0$
$\Delta \Phi(eLJ, eLJ) > 2$	720 ± 13	550 ± 12	410 ± 10	300 ± 9	72 ± 4	17 ± 2	$3.2{\pm}0.9$	/	$4.3 {\pm} 1.0$
Z mass veto	580 ± 12	450 ± 11	330 ± 9	250 ± 8	57 ± 4	$11.0{\pm}1.6$	$2.4{\pm}0.8$	/	$2.5 {\pm} 0.7$
$q_{eLJ} = 0$	580 ± 12	450 ± 11	330 ± 9	250 ± 8	57 ± 4	$11.0{\pm}1.6$	$2.4{\pm}0.8$	/	$2.5 {\pm} 0.7$
$m_{eLJ} > 20 \text{ MeV}$	200 ± 6.9	$290 {\pm} 8.6$	$310 {\pm} 8.9$	240 ± 7.7	57 ± 3.7	$11.0{\pm}1.6$	2.2 ± 0.72	/	/
$ m^{imb} < 0.8$	$200{\pm}6.9$	$290{\pm}8.6$	$310{\pm}8.9$	$240{\pm}7.7$	57 ± 3.7	$11.0{\pm}1.6$	$2.0{\pm}0.68$	/	/
					-				

FRVZ

m_{γ_d} [GeV]	0.017	0.1	0.4	2	10	15	25
2 eLJs	$8400{\pm}46$	$3300{\pm}29$	470 ± 11	8.5 ± 1.4	$230\ \pm7.5$	$48~{\pm}3.4$	12 ± 1.8
Trigger Matched	8300 ± 46	3200 ± 28	470 ± 11	8.5 ± 1.4	$230\ \pm7.4$	46 ± 3.3	12 ± 1.7
Leading track $p_T > 5$ GeV	8200 ± 46	3200 ± 28	460 ± 11	8.2 ± 1.4	$220\ \pm7.4$	44 ± 3.2	11 ± 1.7
$e \text{LJ} \eta < 1.5$	5500 ± 37	$1700\ 21$	$280{\pm}8.5$	5.9 ± 1.1	140 ± 5.7	20 ± 2.1	4.6 ± 1.2
$\Delta \Phi(eLJ, eLJ) > 2$	4400 ± 33	1300 ± 18	$180{\pm}6.8$	2.1 ± 0.69	$130\ \pm 5.6$	4.8 ± 1	0.68 ± 0.39
Z mass veto	4200 ± 32	1200 ± 17	$170{\pm}6.6$	2 ± 0.69	$120\ \pm 5.5$	2.5 ± 0.7	$0.22 \ {\pm} 0.22$
$q_{eLJ} = 0$	4200 ± 32	1200 ± 17	$170{\pm}6.6$	2 ± 0.69	$120\ \pm 5.5$	2.3 ± 0.69	/
$m_{eLJ} > 20 \text{ MeV}$	1800 ± 21	1100 ± 117	$170{\pm}6.6$	2 ± 0.69	$120\ \pm 5.5$	2.3 ± 0.69	/
$ m^{\rm imb} < 0.8$	$1800\ {\pm}21$	$1100{\pm}117$	$170{\pm}6.6$	$2\ \pm 0.69$	$120\ \pm 5.2$	$0.33 \ {\pm} 0.24$	/

HAHM

IFAE 3-5/04/2024

ABCD canale elettronico

Requirement / Region	A (SR)	В	С	D
Lead $eLJ cos(\theta_h) $	< 0.8	< 0.8	> 0.8	> 0.8
Far $eLJ R_{\phi}$	< 0.96	> 0.96	< 0.96	> 0.96

Region	FRVZ Signal samples I								
	$\gamma_{\rm d}$ mass [GeV]	0.017	0.03	0.06	0.1	0.24	2.0	6.0	
A (SR)		17.31±1.45	12.91 ± 1.30	8.86±1.03	4.75 ± 0.74	2.73 ± 0.57			
В		25.08 ± 1.75	21.29 ± 1.64	16.13±1.39	10.27 ± 1.10	2.62 ± 0.55			14
С		3.03 ± 0.59	2.14 ± 0.58	2.02 ± 0.56	1.12 ± 0.34	0 ± 0			98
D		155.54 ± 4.34	116.41 ± 3.79	86.84±3.31	47.73 ± 2.35	17.23 ± 1.43			42
A (exp.)									322 =

Table 7.13: ABCD yields in FRVZ signal and data driven estimate for background in the eLJ-eLJ channel. The signal assumes a $H \rightarrow 2\gamma_d + X$ BR of 0.5%. Uncertainties on the signal are statistical only, while the uncertainty on the number of expected events in region A is obtained from the propagation of the statistical uncertainty on regions B, C and D. Numbers are rounded following the PDG guidelines.

IFAE 3-5/04/2024

Figure 7.20: ABCD plane lead p_T^{imb} and far R_{ϕ} for full Run 2 data and FRVZ benchmark signal sample with $m_{\gamma_d} = 0.1$ GeV.

		$\gamma_{\rm d}$ mass [GeV]	0.017	0.03	0.06	0.1	0.24	2.0	6.0
		A (SR)	9.03	13.98	14.80	10.93	2.34	0.29	0.07
data	S/\sqrt{D}	В	2.53	3.75	3.45	2.80	0.96	0.16	0.03
	S/VB	С	1.00	1.27	1.90	1.58	0.32	0.12	0.01
		D	0.27	0.44	0.31	0.39	0.04	0.04	0.01

Table 7.14: S/\sqrt{B} for regions A, B, C and D in the *e*LJ-*e*LJ channel, as predicted by the FRVZ signal model. Region A takes into account the expected number of background events, obtained with the ABCD method.

- ± 33

Sistematiche canale elettronico

IFAE 3-5/04/2024

m_{γ_d}	Electron	Electron	Electron	Electron	Energy	Energy	Lumi	PRW	Total
,	triggers	isolation	ID	reconstruction	resolution	scale			
[GeV]	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.017	0.2	0.3	2.15	1.26	0.65	0.4	0.83	0.8	2.7
0.03	0.2	0.3	2.26	1.29	0.66	0.3	0.83	2.2	3.5
0.06	0.2	0.3	2.31	1.29	1.11	0.8	0.83	3.9	4.9
0.10	0.2	0.3	2.21	1.27	0.69	0.7	0.83	3.6	4.5
0.24	0.2	0.3	2.19	1.33	0.7	0.1	0.83	8.6	9.0

Table 6.25. Summary table of the impact of the experimental systematic uncertainties for the FRVZ signal samples in the *eLJ*-*eLJ* channel. Uncertainties below the per-mill level are not shown. PRW stands for the uncertainty associated to the PU reweighting.

m_{γ_d}	Electron	Electron	Electron	Electron	Energy	Energy	Lumi	PRW	Total
	triggers	isolation	ID	reconstruction	resolution	scale			
[GeV]	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.017	-	0.1	0.69	1.11	0.20	0.16	0.83	1.0	1.7
0.1	-	0.1	0.83	1.08	0.27	0.3	0.83	1.0	1.7
0.4	-	0.1	0.70	1.06	0.50	0.7	0.83	1.0	1.8
2	-	-	0.46	1.15	-	-	0.83	7.4	7.5

Table 6.26. Summary table of the impact of the experimental systematic uncertainties for the HAHM signal samples in the *eLJ*-*eLJ* channel. Uncertainties below the per-mill level are not shown. PRW stands for the uncertainty associated to the PU reweighting.

