

Studio di una sorgente di positroni ad alta intensità basata sui cristalli orientati

Progetto e+BOOST - intense positron source Based On Oriented crySTals

IFAE 2024, Firenze 3-5 Aprile 2024

SPEAKER: <u>Daniele Boccanfuso</u> Università degli Studi di Napoli Federico II

 E+BOOST team: L. Bandiera, P.I. INFN, A.O.M. Iorio, Università degli Studi di Napoli Federico II, M. Prest, Università degli studi dell'Insubria
 Partner: IJCLab (Orsay, France): leader I. Chaikovska, Mainz University (Germany): leader W. Lauth, INFN Milano: leader A. Bacci

Future Circolar Collider

- Prossima macchina dopo LHC.
 ~100 Km di circonferenza.
- Stadi: FCC-ee, FCC-hh, FCC-eh.
- Caratteristiche FCC-ee: Luminosità: > 7 × 10³⁴ cm⁻²s⁻¹ Energia nel CM: 90 – 360 GeV
- Higgs factory, Top factory.

Fondamentale avere una sorgente di positroni ad alta intensità

Sorgente di positroni convenzionale

Fascio di elettroni contro un bersaglio di materiale ad alto numero atomico, tipicamente tungsteno.

Limitazione: l'energia depositata può danneggiare il bersaglio

Limite superiore alla Peak Energy Deposition Density (PEDD): 35 J/g. Limite più stringente per FCC-ee:10.5 J/g

Sorgente ibrida

Una sorgente ibrida è composta da:

- 1. Un bersaglio per la produzione di fotoni (radiatore)
- 2. Un bersaglio per la conversione dei fotoni in coppie e+e- (convertitore)

Vantaggio: riduzione dell'energia depositata e riduzione della PEDD.

Cristalli orientati

Proposta e+BOOST: cristalli orientati.

- Potenziale continuo lungo gli assi cristallografici (range angolare ~mrad).
- Campo elettrico intenso: $\sim 10^{12} V/cm$ per W.
- Incremento di fotoni "soft" rispetto al bremmstrahlung di Bethe-Heitler, adatti ai sistemi di cattura.

Photon spectrum

Simulazione

- Nelle simulazioni MonteCarlo di uso generale, come Geant4, la materia è descritta nativamente come omogenea, isotropa e amorfa.
- G4ChannelingFastSimModel: introduce in Geant4 l'interazione tra particelle e cristalli, basato sulla formula semi-classica di Baier-Katkov.

$$\frac{dE}{d^3k} = \omega \frac{dN}{d^3k} \frac{\alpha}{4\pi^2} \iint dt_1 dt_2 \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} e^{-ik'(x_1 - x_2)} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_1v_2 - 1) + \omega^2/\gamma^2 \right]}{2E'^2} dt_1 dt_2 = \frac{\left[(E^2 + E'^2)(v_$$

Validato dai dati: Eur. Phys. J. C (2022) 82:699

Simulazione: configurazione

PositronSource è un'applicazione in Geant4 svulippata per e+BOOST che permette di simulare diverse configurazioni per una sorgente basata sui cristalli.

Simulazione: dimensioni sorgente ibrida

PositronSource è un'applicazione in Geant4 svulippata per e+BOOST che permette di simulare diverse configurazioni per una sorgente basata sui cristalli.

Simulazione: collimatori

PositronSource è un'applicazione in Geant4 svulippata per e+BOOST che permette di simulare diverse configurazioni per una sorgente basata sui cristalli.

Possibilità di introdurre un collimatore o un campo magnetico

Simulazione: bersaglio granulare

PositronSource è un'applicazione in Geant4 svulippata per e+BOOST che permette di simulare diverse configurazioni per una sorgente basata sui cristalli.

Possibilità di studiare un bersaglio granulare

Stadi successivi alla sorgente: tracking

Dopo la sorgente, e+ ed e- sono incanalati in un sistema a radiofrequenza (injector system). Gli stadi sono simulati con il framework RF-track.

- Adiabatic matching device
- Cavità a radiofrequenza
- Positron Linac

Otteniamo la resa prima del damping ring, dove avviene il cooling.

Credits: F. Alharthi

Studio del fascio di positroni

Elettroni: 6 GeV, disp. fascio: 0.3 mm, spessore rad: 2 mm, separazione: 0cm, spessore conv: 12 mm.

12

Scan sui parametri della sorgente

- La larghezza del fascio di e+ aumenta con lo spessore degli elementi.
- La PEDD fluttua attorno a un valore centrale superato un certo spessore.
- La resa di positroni cresce con lo spessore, ma sembra raggiungere un plateau.

Confronto con sorgente convenzionale

Confronto tra una sorgente convenzionale (W, 17.5mm) e sorgente ibrida.

	case	Target yield	e+ beam size [mm]	Edep [GeV/e-]	PEDD [MeV/mm^ 3e-]	Accepted yield	PEDD [J/g/pulse]	Deposited Power [kW]
	Conventio nal	14,40	0,85	1,46	38,30	7,0	7,67	1,13
	target7m m	13,48	0,65	0,56	33,59	6,33	7,43	0,47
Rad 2mm, D0cm 🚽	target9m m	14,91	0,69	0,88	35,49	7,22	6,88	0,65
	target12 mm	15,80	0,73	1,42	35,85	7,72	6,50	0,99
Rad 2mm,	D5cm	14,49	0,71	0,87	31,16	6,84	6,38	0,68
target 9.0 mm	D50cm	15,06	0,97	0,82	13,73	5,06	3,80	0,87
D0cm. target 11.6 mm	W1.1mm	14,56	0,70	1,11	33,18	7,16	6,5	0,84
	W2.0mm	14,99	0,72	1,34	34,90	7,51	6,52	0,96

Conclusioni

- Siamo in grado di simulare l'intero sistema di iniezione previsto per FCC-ee.
- Una sorgente ibrida con radiatore cristallino porta a un incremento dell'intensità e alla riduzione della potenza depositata nel bersaglio e della PEDD.

Sviluppi futuri:

- Simulazione con parametri differenti per il fascio di elettroni primari: energia 2.86 GeV, larghezza fascio 1 mm.
- Ottimizzazione del convertitore (granulare, raffreddamento).
- Ottimizzazione del sistema di cattura per la sorgente a cristalli.
- Test sperimentale del sistema di iniezione per l'upgrade del progetto CHART al PSI.

Grazie per l'attenzione!

Backup

Irradiation tests to measure the heating/radiation resistance (A past test at SLAC with a thin W crystal (0.3 mm thick) showed no damages up to a fluence of 2x10^20e-cm^-2 We would try to get a larger fluence to determine the damage threshold)

Moto trasversale π^- 150 Gev

Risultati: spessore del convertitore variabile

case	Target yield	e+ beam size [mm]	Edep [GeV/e-]	PEDD [MeV/mm^3 e-]	Accepted yield	PEDD [J/g/pulse]	Deposited Power [kW]
conventional	14,40	0,85	1,46	38,30	7,0	7,67	1,13
target6mm	11,93	0,49	0,43	53,27	5,73	13,03	0,41
target7mm	12,92	0,51	0,57	51,17	6,36	11,29	0,48
target8mm	13,78	0,52	0,71	54,51	6,83	11,20	0,56
target9mm	14,33	0,53	0,87	55,06	7,21	10,71	0,65
target10mm	14,81	0,55	1,05	55,84	7,53	10,41	0,75
target11mm	14,96	0,57	1,23	57,29	7,61	10,56	0,87
target12mm	15,07	0,58	1,42	56,37	7,73	10,23	0,99

Risultati: spessore del convertitore variabile

case	Target yield	e+ beam size [mm]	Edep [GeV/e-]	PEDD [MeV/mm^3 e-]	Accepted yield	PEDD [J/g/pulse]	Deposited Power [kW]
conventional	14,40	0,85	1,46	38,30	7,0	7,67	1,13
target7mm	13,48	0,65	0,56	33,59	6,33	7,43	0,47
target8mm	14,33	0,68	0,71	34,90	6,81	7,18	0,56
target9mm	14,91	0,69	0,88	35,49	7,22	6,88	0,65
target10mm	15,43	0,72	1,05	35,53	7,47	6,66	0,75
target11mm	15,65	0,71	1,23	36,46	7,64	6,68	0,86
target12mm	15,80	0,73	1,42	35,85	7,72	6,50	0,99

Risultati: spessore del radiatore variabile

case	Target yield	e+ beam size [mm]	Edep [GeV/e-]	PEDD [MeV/mm^3 e-]	Accepted yield	PEDD [J/g/pulse]	Deposited Power [kW]
conventional	14,40	0,85	1,46	38,30	7,0	7,67	1,13
W1.1mm	14,56	0,70	1,11	33,18	7,16	6,5	0,84
W1.2mm	14,70	0,70	1,15	33,94	7,29	6,53	0,85
W1.3mm	14,69	0,71	1,17	32,95	7,27	6,36	0,87
W1.4mm	14,75	0,71	1,20	33,63	7,36	6,41	0,88
W1.5mm	14,78	0,71	1,22	33,99	7,34	6,50	0,90
W1.6mm	14,95	0,71	1,26	33,85	7,48	6,35	0,91
W1.7mm	14,92	0,72	1,27	33,82	7,43	6,38	0,92
W1.8mm	14,94	0,72	1,30	34,45	7,46	6,47	0,94
W1.9mm	15,01	0,73	1,32	33,97	7,50	6,35	0,95
W2.0mm	14,99	0,72	1,34	34,90	7,51	6,52	0,96

Risultati: distanza di separazione variabile

case	Target yield	e+ beam size [mm]	Edep [GeV/e-]	PEDD [MeV/mm^3 e-]	Accepted yield	PEDD [J/g/pulse]	Deposited Power [kW]
conventional	14,40	0,85	1,46	38,30	7,0	7,67	1,13
D5cm	14,49	0,71	0,87	31,16	6,84	6,38	0,68
D10cm	14,68	0,75	0,86	27,57	6,54	5,91	0,70
D15cm	14,84	0,80	0,86	23,34	6,33	5,17	0,73
D20cm	14,87	0,81	0,85	21,94	6,10	5,03	0,75
D25cm	14,93	0,84	0,85	20,07	5,85	4,80	0,78
D30cm	14,97	0,87	0,85	18,09	5,65	4,48	0,81
D35cm	15,00	0,89	0,84	16,49	5,51	4,19	0,82
D40cm	15,07	0,92	0,84	14,89	5,36	3,88	0,84
D45cm	15,02	0,92	0,83	14,33	5,19	3,87	0,86
D50cm	15,06	0,97	0,82	13,73	5,06	3,80	0,87