

Firenze, 3-5 Aprile 2024 Istituto degli Innocenti, Piazza SS Annunziata

This project has received funding from the European Union's Research and Innovation programme under GAs No 101094300 and No 101004730.

Crilin: a semi-homogeneous crystal calorimeter for the **Muon Collider**

C. Giraldin - Università degli Studi di Padova e INFN Padova per la collaborazione IMCC e CRILIN

La proposta di un Muon Collider

centro di massa dell'ordine dei multi-TeV.

massa dell'elettrone.

compatta.

• Il muon collider è un collisore futuro a geometria circolare in cui fasci di muoni e anti-muoni collidono ad energia del

• Possibilità di combinare i vantaggi dei collisori pp con quelli dei collisori e⁺ e⁻, in una macchina relativamente

Il fondo indotto dal decadimento del fascio

- I muoni sono particelle **instabili** (τ =2.2 μ s a riposo).
- secondarie e terziarie che forma il fondo indotto dal fascio.

Fondamentale la riduzione del fondo indotto dal fascio all'interno della regione del rivelatore (software e hardware)

• Coppia di coni assorbitori (nozzles) in Tungsteno: mitigazione del flusso di particelle del fondo indotto dal fascio.

https://arxiv.org /abs/2303.08533

• Il decadimento dei muoni e le loro interazioni con i materiali della macchina, produce un intenso flusso di particelle

• Alta densità nella regione del detector, ciò rende impegnativa la ricostruzione degli eventi di interazione μ + μ -.

https://arxiv.org /abs/2105.09116

Rivelatore per Muon Collider

- Struttura cilindrica con geometria ermetica.
- Progetto ottimizzato per gli studi a √s=3 TeV.

 In fase di studio la struttura del rivelatore per √s=10 TeV.

hadronic calorimeter

 60 layers of 19-mm steel absorber + plastic scintillating tiles;

30x30 mm² cell size;

7.5 λ_l.

electromagnetic calorimeter

 40 layers of 1.9-mm W absorber + silicon pad sensors;

5x5 mm² cell granularity;

• 22 $X_0 + 1 \lambda_1$.

muon detectors

 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;

30x30 mm² cell size.

https://arxiv.org/abs/2303.08533

Richieste per il calorimetro elettromagnetico

- Intenso flusso di fotoni (96%) e **neutroni** (4%) indotto dal fascio.
- Energia media fotoni **1.7 MeV**.

4 aprile 2024 - IFAE 2024

Elevata granularità: riduzione del numero delle hit nella singola cella. Distinzione delle hit di segnale da quelle del fondo.

Ottima risoluzione temporale: (<100ps) riduzione della componente fuori tempo delle particelle del fondo indotto dal fascio.

Segmentazione longitudinale: distinzione delle cascate elettromagnetiche dovute alle particelle del fondo.

• Alta risoluzione in energia: $10\%/\sqrt{E}$ per ottenere buone prestazioni di fisica.

C. Giraldin

La tecnologia Crilin

- in un calorimetro **semi-omogeneo** basato su cristalli **PbF2** e letti da fotomoltiplicatori in silicio (SiPM).
- Architettura modulare, composta da moduli di matrici di cristalli.
- Struttura formata da **5 strati** di cristalli (22 X₀).
- Dimensione dei cristalli: **10x10x40 mm**³ letti da quattro SiPM ognuno con due canali di lettura.

Segmentazione longitudinale

• Crilin (Crystal calorimeter with longitudinal information) nuova proposta per calorimetro elettromagnetico: consiste

https://arxiv.org/abs/2308.01148

Ottima resistenza alle radiazioni

Caratterizzazione tramite simulazione

- Simulato campione 15000 fotoni Monte Carlo tra 1 GeV e 1000 GeV.
- Associazione tra fotoni ricostruiti e Monte Carlo.
- Correzione dell'energia ricostruita.

Contenimento dello sciame elettromagnetico

1000

C. Giraldin

Stato di sviluppo dei prototipi

• Versioni prototipi:

- Proto-0 (2 cristalli -> 4 canali)
- Proto-1 (matrice cristalli 3x3, 2 strati -> 36 canali)

- Verifica della resistenza alla radiazione dei cristalli e SiPM
- Campagne di prove con fascio
 - Proto-0: CERN H2 https://arxiv.org/abs/2206.05838
 - Proto-1: LNF-BTF (luglio 2023) https://inspirehep.net/literature/2753375 CERN-SPS-H2 (Agosto 2023)

https://arxiv.org/abs/2308.01148

Resistenza ai danni da radiazione

• In ECAL ci si aspetta una fluenza di equivalente di neutroni~10¹⁴ 1MeV-neq cm⁻²y⁻¹ e TID ~10 kGy y⁻¹

• Cristalli:

- TID fino a 1 MGy (Calliope, ENEA Casaccia).
- Neutroni da 14 MeV (ENEA-FNG, fino a 10^{13} n cm⁻²).

Non si osservano perdite importanti di trasmittanza

• SiPM:

- Confronto SiPM con dimensioni **10** μ **m** e **15** μ **m** .
- Irradiati con neuroni da 14 MeV e 0 fluence di 10¹⁴ n cm⁻² (ENEA-FNG).

https://inspirehep.net/literature/2753375

10 μ m pixel-size SiPMs

V_{br} [V]	$I(V_{br}+4V)$ [mA]	$I(V_{br}+6V)$ [mA]	$I(V_{br}+8V)$ [mA]
76.76 ± 0.01	1.84 ± 0.01	6.82 ± 0.01	29.91 ± 0.01
77.23 ± 0.01	2.53 ± 0.01	9.66 ± 0.01	37.51 ± 0.01
77.49 ± 0.01	2.99 ± 0.01	11.59 ± 0.01	38.48 ± 0.01

Hamamatsu S14160-3015PS

Prova con fascio: risoluzione temporale

• Test di proto-1 presso CERN-H2:

- Fascio di elettroni a 120 GeV, centrato sul cristallo centrale (matrice 3x3).
- Misura basata sulla differenza tra i tempi dei due canali del cristallo centrale:

 $\Delta T = T_0 - T_1$

• Risoluzione temporale **O(20ps)** per entrambi gli strati.

4 aprile 2024 - IFAE 2024

entrale (matrice 3x3). ali del cristallo centrale:

						F		
	-			Entries	952			
		Ļ		Mean	0.1246			
]]			Std Dev	0.02401			
				Underflow	0			
		N		Overflow	18			
	11/4	li Nil		χ² / ndf	41.54 / 40			
	ţ, 	† Al		Prob	0.4036			
	1			Constant	50.38 ± 2.07			
	11	PN		Mean	0.1251 ± 0.0008	_		
		1		Sigma	0.02366 ± 0.00059	-		
	1	- h				7		
Parallel central crystal 🚽								
2 nd laver								
		t N		2	ayer	_		
		<u>і</u> Ц				_		
		¶	NI.			_		
<mark>61</mark>	01	0 15	0.0	0.25 0.2	0.35 0.4 0.45			
5	0.1	0.15	0.2	0.20 0.0		0.0		
			and the second second	u in [1400,1	oouj pu :: 11-10 [nsj		

Tecniche differenti di analisi sono in corso

Conclusione

- compatibili con i requisisti richiesti.
 - Risoluzione in energia:

$$\frac{\sigma}{E} \approx \frac{4.8\%}{\sqrt{E}} + 0$$

- Eccellente risoluzione temporale: **O(20ps)** @ 120 GeV
- Ottima resistenza alle radiazioni

- Ulteriori studi sperimentali sulla resistenza alle radiazioni (LNF-BTF).
- Nuovo prototipo in fase di sviluppo: 5/6 strati con matrici di cristalli 9x9.

2 %

Backup

Il fondo indotto dal decadimento del fascio

- Tuttavia una componente irriducibile del fondo indotto dal fascio entra nella regione del detector.
- Simulazioni del BIB con **FLUKA** ad $\sqrt{s}=1.5$ TeV (con i coni assorbitori).

https://arxiv.org/abs/2303.08533

Asincrono rispetto al tempo di

Sciame nel cristallo

- Geometria con simulazione Geant4
- Esempio di sviluppo dello sciame per elettroni a 120 GeV

- Ogni singolo cristallo è letto da 4 Sipm.
- Coppie di Sipm sono collegati in serie e formano due canali di lettura (CH0, CH1).

- Proto-0 formato da due cristalli in un singolo strato (4 Canali).
- Caratteristiche dei cristalli testati:

Crystal	PbF ₂	PWO-UF	
Density [g/cm ³]	7.77	8.27	
Radiation length [cm]	0.93	0.89	
Molière radius [cm]	2.2	2.0	
Decay constant [ns]	-	0.64	
Refractive index at 450 nm	1.8	2.2	
Manufacturer	SICCAS	Crytur	

- Ogni cristallo letto da 4 Sipm Hamamatsu S14160-3010PS SMD.
- Dimensione $3x3 \text{ mm}^2$ (singolo pixel $10\mu \text{m}$).
- Leggere caratteristiche delle FEE
- Fascio: elettroni da 120 GeV
- Trigger scintillatori S1 e S2
- Tracciamento con micro-strip silicon tracker C1 e C2

- La carica del segnale è stata ottenuta integrando tra [T_{picco}-20 ns, T_{picco}+140 ns]
- Il tempo dell'impulso è stato ottenuto tramite un fit della salita del segnale, considerando un valore ottimizzato di CF a 12%.

- Studio del segnale variando la posizione di impatto sul cristallo.
- Effetti di trasporto ottico nel cristallo.
 - Effetto sul singolo canale (CH0) variando la posizione con dei tagli fiduciali.

- Asimmetria di carica e tempo in funzione della posizione del fascio (x).
- La luce indiretta è maggiormente attenuata
- Nel caso della configurazione posteriore, non si osserva asimmetrie.
- La riflessione indietro lungo il cristallo appiana la corrrelazione rispetto la posizione del fascio.

• Risultati ottenuti anche dalle simulazioni

⁴ aprile 2024 - IFAE 2024

Proto-0 test LNF-BTF

Elettroni a 450 MeV

Confronto tra due wrapping dei cristalli: Mylar e Teflon

- Teflon: 0.32 p.e/MeV
- Mylar: 0.25 p.e/MeV

C. Giraldin

Studio di simulazione

- Campione di 15000 fotoni Monte Carlo.
- Senza la presenza del fondo indotto dal fascio.

4 aprile 2024 - IFAE 2024

C. Giraldin

Prova con fascio: risoluzione temporale

• Test di proto-1 presso CERN-H2:

- Analisi considerando l'informazione dei tempi medi di entrambi gli strati è in corso.
- Risoluzione temporale O(40ps) largamente dominata dall'effetto di jitter della sincronizzazione O(32ps)

