

The ALICE ITS3 upgrade project Latest results on monolithic pixel sensors test structures realized in the 65 nm technology

U. Savino on behalf of ALICE

IFAE 2024 - Firenze 3-5 Aprile

- properties of the quark-gluon plasma produced in heavy-ion collisions
- low momentum (≤1 GeV/c) particle reconstruction

INFN

ITS2 first large-area (~ 10 m^2) silicon tracker $\rightarrow MAPS$

ALPIDE chip: TowerJazz 180 nm CMOS imaging process

Main characteristics:

- 7 layers of MAPS (3 inner 4 outer barrel)
- close to interaction point (23 mm)
- improved single point **resolution** (pixel ~ $29 \times 27 \,\mu m^2$)
- low material budget: 0.35% X₀/X
- fast readout:
 - Pb-Pb collisions at 50 kHz (ITS1: 1 kHz)
 - p-p at 400 kHz

ITS3 - truly cylindrical wafer-scale MAPS (INFN)

Layout:

 $3 \text{ layers} \rightarrow \text{replace ITS2 Inner Barrel}$

• beam pipe inner radius (to 16 mm with 500 µm thickness)

Technology:

- 65 nm CMOS from TPSCo: 300 mm wafer-scale chips, fabricated using stitching
- thinned down to 50 μm • flexible (bent to target radii)
- mechanically held by carbon foam ribs with low density and high thermal conductivity

Benefits:

- extremely low material budget: 0.07% X₀
- homogeneous material distribution

ITS3 assembly without stiff support

65 nm CMOS technology qualification

Performance of **thinned** & bent sensors

 \mathbf{O}

Incontri di Fisica delle Alte Energie 2024 - Umberto Savino / 3-5 Aprile

Stitched wafer scale sensor

performance (yield and specifications)

out stiff support structures

Air **cooling** system

MLR1 submission - APTS, DPTS, CE65

Four test structures

- Analog (APTS 4x4 px) direct analog readout
 - OpAmp buffer for enhanced time resolution
 - SF buffer for stable readout
- Digital (DPTS 32x32 px) digital asynchronous readout 0
- Circuit Exploratoire (CE65 64x32 px) rolling shutter analog readout

Three sensor variants

- standard: ALPIDE-like
- modified: low dose n-type implant
- modified with gap: low dose n-implant with lateral gap

MAIN results of MLR1 test structures in poster session: MLR1: 65 nm CMOS MAPS technology validation for ALICE ITS3 - (Alessandro Sturniolo)

APTS OA - time resolution

Test beam

- SPS (CERN) positive hadrons 120 GeV/c lacksquare
- time reference \rightarrow FBK fast LGAD (30 ps) •
- APTS-SF trigger (15 µm pitch) lacksquare
- APTS-OA modified with gap (10 µm lacksquarepitch) with inner pixels read out with a scope (40GS/s x 4 & 13 GHz)

Result: 63 ps time resolution and **above 99%** efficiency at V_sub = -4.8 V

Incontri di Fisica delle Alte Energie 2024 - Umberto Savino / 3-5 Aprile

Performance of thinned and bent sensors (IFR (IFR) (IF

Test on ALPIDE sensors

Procedure

- number of no responsive pixels
- pixel threshold
- noise
- fake hit rate

performance unchanged after bending results from bent MLR1 structures \rightarrow WIP

Spatial resolution X (µm)

Without using stiff support

Engineer model 1 has proven integration scheme & cooling scheme \bullet

Half detector

- wafer-scale bent MAPS
- carbon foam spacers \bullet

Rigid support with good **thermal properties**

Incontri di Fisica delle Alte Energie 2024 - Umberto Savino / 3-5 Aprile

Air cooling

- Cooling characteristics:
 - employ **air**
 - speed: 8 m/s
 - power dissipation 40 mW/cm²
 - temperature gradient < 5 K
 - 1 µm vibration

 $d~(\mu m)$

Temperature variation from simulation

Aeroelastic test

Stitched wafer scale sensors

MOnolithic Stitched Sensor (MOSS) & MOnolithic Stitched sensor with Timing (MOST)

MOSS:

- largest stitched chip ER1 (25.9 cm x 1.4 cm)
- 6.72 million pixels
- **10 Repeated Sensor Units** (RSU) & two end-caps regions (powering and readout)
- 2 **independent** Half Units (HU) per RSU
 - Top HU: 4 matrices of 256 x 256 22.5 µm pixels
 - Bottom HU: 4 matrices of 320 x 320 18 µm pixels

MOST:

- 25.9 cm x 2.5 mm dimension \bullet
- 10 tightly packed matrices
- 64 x 352 18 µm pitch sub-matrices/matrix
- shared wafer-scale digital asynchronous readout per matrix

SETUP

~2000 wire bonds on proximity board

MOSS performance

5 FPGA based readout cards

Procedure WIP

- looking for hotspots
- wafer probing \bullet
- IV curves at CMOS nodes lacksquare

MOSS chip from first production 97% (97/100 chips) "OK"

11

Yield

- $\leq 2\%$ missing pixels due to production yield
- 2/3 wafers comply \bullet
- 1440 regions (tiles)/sensor --> can be remotely \bullet switched off in case of production failure

Full ITS3 sensor production

- 18 wafers from ER1 yield extrapolation
- plan to produce 50 wafers \bullet

ITS3 construction and implementation phase

MOSS test beam

 First results confirm extrapolated (MLR1) performance in terms of detection efficiency and spatial resolution

Looking at the future

- ER2 producing full-size and full-functionality prototype
- ER3 final detector-grade production version
- optimization of detector integration and assembly sequence \rightarrow 2 qualification model (QM) half barrels
- final model \rightarrow 4 half-barrel (final model)

Incontri di Fisica delle Alte Energie 2024 - Umberto Savino / 3-5 Aprile

https://arxiv.org/abs/2401.04629

Spare slides

MLR1 characterization

Validation of the 65nm CMOS TPSCo process

Incontri di Fisica delle Alte Energie 2024 - Umberto Savino / 3-5 Aprile

ALPIDE bending

Bent along column

