

UNIVERSITÀ DEL **SALENTO**

Sviluppo di tecniche di machine learning per lo studio della composizione di massa dei raggi cosmici di altissima energia e della componente muonica degli sciami atmosferici estesi con i dati dell'Osservatorio Pierre Auger

"Self Organizing Map algorithms on GPUs for faster Time Series Analysis clustering"

Matteo Conte, Università del Salento, INFN - sezione di Lecce

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

Istituto Nazionale di Fisica Nucleare Sezione di Lecce

PIERRE AUGER observatory

Punti chiave

- Osservatorio Pierre Auger e il suo upgrade
- Composizione di Massa dei raggi cosmici ad altissime energie
- Self Organizing Map
- Addestramento, monitoraggio e ottimizzazione
- Test preliminari per la caratterizzazione della frazione di segnale muonico f_{μ} :
 - Sui 'meta' dati di ricostruzione dello sciame atmosferico esteso
 - Sui segnali (temporali) dei PMT
- Step successivi

Il Rivelatore di Superficie dell'Osservatorio Pierre Auger

- Oltre 1600 Stazioni Water Cherenkov
- Oltre 1400 SSD

Misura della composizione di massa degli UHECRs

X_{max} è un'osservabile <u>sensibile alla massa</u> Evoluzione generale del trend di massa dalle misure dei primi due momenti di X_{max}

Misura della composizione di massa degli UHECRs

Le misure ibride soffrono di bassa statistica (FD 15% duty cycle)

Migliorare l'analisi alle più alte energie con i dati del Surface Detector (100% duty cycle).

 Metodi data-driven usando il tempo di salita medio dalle stazioni SD in un evento (Δ) collegato alla prossimità del massimo dello sciame da terra

Estrazione delle componenti elettromagnetica e muonica in superficie

AugerPrime

- Due misure indipendenti (WCD + SSD)
- Algoritmi di Machine learning per estrarre il segnale muonico e stimare parametri correlati alla massa del primario

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

Matrix Inversion

$$\begin{split} \mathcal{F}_{\text{em}} &= \frac{1}{\lambda - \beta} \left(\frac{S_{\text{SSD}}}{\mathcal{A}_{\text{SSD}}} - \frac{S_{\text{WCD}}}{\mathcal{A}_{\text{WCD}}} \right), \\ \mathcal{F}_{\mu} &= \frac{1}{\lambda - \beta} \left(\lambda \, \frac{S_{\text{WCD}}}{\mathcal{A}_{\text{WCD}}} - \beta \, \frac{S_{\text{SSD}}}{\mathcal{A}_{\text{SSD}}} \right). \end{split}$$

Supervised - DNN

Supervised - RNN

Self Organizing Map

Una mappa auto-organizzante, o SOM, è un metodo di riduzione della dimensionali dei dati. Si tratta di una rete neurale **non supervisionata** per costruire una rappresentazione discretizzata a bassa dimensione dallo spazio di input dei campioni di addestramento

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

Q = N x M (neuroni)
Vettore di riferimento:
\$\vec{r}^{(i,j)} = [r_1^{(i,j)}, r_2^{(i,j)}, \ldots, r_k^{(i,j)}]\$
Neurone (i, j)
Cardinalità k legata al vettore di input

$$= [x_0, x_1, \dots, x_k]$$

 $\boldsymbol{\mathcal{X}}$

Addestramento

- '**random**' initialization sui dati.
- Per ogni input $l \in [0, L 1]$ viene determinato un neurone vincitore, come il neurone (i, j) che k = K - 1minimizza la distanza euclidea: $D_{min}^l = \min_{(i,j)} \sum_{k} (r_k^{(i,j)} - x_k^l)^2$ k=0
- Definiamo una singola epoca t quando tutti gli input L sono stati elaborati dalla mappa
- Aggiornamento di tutti i vettori di riferimento:
- raggiungimento di una determinata condizione

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

• I vettori di riferimento dei singoli neuroni vengono inizializzati con due possibili opzioni: '**pca**' o

$$\vec{r}^{(i,j)} \rightarrow \vec{r}^{'(i,j)}$$
 IPER-PAR: $[\alpha(\frac{t}{N_e}), \sigma(\frac{t}{N_e})]$

• Questo processo viene ripetuto per un numero selezionato di epoche (N_{ρ}) o opzionalmente fino al

Test preliminari sui MC per la caratterizzazione di f_{μ}

Sciami simulati con CORSIKA

- ~ 5×10^5 segnali da eventi simulati
- Distribuiti uniformemente in logaritmo dell massa del primario (*p*, *He*, *CNO*, *Fe*)
- Ricostruzione con

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

- Distribuiti uniformemente in logaritmo dell'energia (sopra $10^{18.5}eV$) direzione di arrivo e

Test preliminari sui MC per la caratterizzazione di f_{μ}

Selezione Dataset 1 - Serie Temporali

- Media pesata dei segnali dei PMT nel
 WCD
- Cardinalità:

k = 300 bin ($\simeq 2.5 \mu s$ time window) con la nuova e più veloce elettronica di acquisizione

- Normalizzazione dei segnali
- Cluster basati sulla forma del segnale

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

Selezione Dataset 2 - 'Meta'

 x_5

Xg

Parametri ricostruiti dello sciame

- x_0 E : energia primario.
- *x*₁ *r* : distanza della stazione dall'asse dello sciame
- $x_2 \quad \theta$: zenith
- $x_3 \quad \psi$: azimuth

Informazioni dai segnali della stazione

- S_{WCD}: segnale rilasciato in acqua [VEM].
- S_{SSD} : segnale rilasciato nello scintillatole [MIP]
- $\begin{array}{ccc} x_6 & t_r : \text{tempo di salita} \\ x_7 & t_r : \text{tempo di diacat$
 - t_f : tempo di discesa.
 - \check{t}_{50} : tempo al 50% del segnale totale
- *x*₉ *A*/peak: rapporto area-picco

Test preliminari sui MC per la caratterizzazione di f_{μ} Dataset 1 - Serie Temporali • $L \simeq 3.7 \times 10^5$, $Q = int (5\sqrt{L}) = 3024$

 Errori di quantizzazione e topografico in funzione del numero di epoche

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

- $\alpha_0 = 0.5$, $\sigma_0 = 10$, $N_e = 10$
- Neuron Distance Map (grid: 55×55)

PRIMA DELL'ADDESTRAMENTO

Inizializzazione 'random'

DOPO L'ADDESTRAMENTO

Clustering di segnali simili in diverse zone della mappa

Test preliminari sui MC per la caratterizzazione di f_{μ} Dataset 1 - Serie Temporali

Clustering Binario

 $\{f_{\mu} \leq 50\%, f_{\mu} > 50\%\}$

Clustering Multiclasse

 $\{f_{\mu} \leq 20 \%, 20 \% < f_{\mu} \leq 40 \%, 40 \% < f_{\mu} \leq 60 \%, 60 \% < f_{\mu} \leq 80 \%, f_{\mu} > 20\%\}$

Test preliminari sui MC per la caratterizzazione ${\rm di} f_{\mu}$ Dataset 2 - 'Meta'

Clustering Binario

 $\{f_{\mu} \leq 50\%, f_{\mu} > 50\%\}$

Clustering Multiclasse

 $\{f_{\mu} \leq 20 \%, 20 \% < f_{\mu} \leq 40 \%, 40 \% < f_{\mu} \leq 60 \%, 60 \% < f_{\mu} \leq 80 \%, f_{\mu} > 20\%\}$

Conclusioni

- Test preliminari dimostrano una maggiore efficacia per cluster di input ad alta dimensionalità rispetto ad algoritmi più semplici
- ricostruzione dello sciame

Step Successivi

- Studio di input più adatti al clustering finalizzato allo studio della muon fraction
- Ricerca di strutture direttamente sui dati (simulations unbiased)
- Applicazione per classificazione 'sciame per sciame' della composizione di massa

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

• Risultati sui soli segnali WCD mancano delle informazioni aggiuntive legate ai parametri di

GRAZIE DELL'ATTENZIONE

BACKUP

AugerPrime (Phase II) Performances

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

UB - UUB comparison Calibration

19.5

UB

1.2

1.4

L'aging del Water Cherenkov detector influisce sull'istogramma di calibrazione

Numero di neuroni

- Q non deve essere troppo grande, altrimenti la mappa risultante avrebbe un singolo neurone adattato per ogni dato di input
- un'adeguata organizzazione dei dati in classi separate

In genere:
$$Q = 5\sqrt{\text{len(dataset)}} = 5\sqrt{L}$$

Per cui se si sceglie una griglia quadrata N = M

$$N = \sqrt{5\sqrt{L}} \simeq 2.24\sqrt[4]{L}$$

• Q non deve essere troppo piccolo, poiché una mappa troppo povera non riesce a cogliere

Aggiornamento pesi

Quando si definisce un neurone vincitore, tutti i pesi sono aggiornati come:

Aggiornato all'input (1-1)-esimo

 $r_{k}^{'(i,j)} = r_{k}^{(i,j)} + \alpha(\frac{t}{N_{e}})H(\frac{t}{N_{e}}, \vec{d}_{min} - \vec{d}_{(i,j)})(x_{k}^{l} - r_{k}^{(i,j)})$ Differenza tra input I-esimo e peso

Aggiornamento pesi

Quando si definisce un neurone vincitore, tutti i pesi sono aggiornati come:

$$r_k^{'(i,j)} = r_k^{(i,j)} + \alpha(\frac{t}{N_e})H(\frac{t}{N_e}, \vec{d}_{min} - \vec{d}_{(i,j)})(x_k^l - \vec{d}_{(i,j)})$$

- Learning Rate α : iperparametro, funzione di N_{ρ}
- Funzione di aggiornamento di vicinanza:

$$H(\frac{t}{N_e}, \vec{d}_{min} - \vec{d}_{(i,j)})$$
 in genere una Gaussiana

1.00.8 0.6 H(t)0.4 0.2 0.0 0.50

 $(d_{min} - d_{(i,j)})^2$ J: exp[---

Monitoraggio del training Errori di quantizzazione e topografico

• A differenza dei modelli supervisionati, in cui possiamo minimizzare una funzione di perdita, qui possiamo monitorare il processo di "addestramento" tramite l'errore di quantizzazione definito come:

QE = -

 Possiamo controllare anche l'errore topografico che definisce quanto è buona la topografia della mappa, per preservare la vicinanza tra neuroni simili:

> N. casi in cui i primi due BMU non sono vicini $\times 100\%$ N. casi totali

$$\frac{\sum_{l=0}^{l=L-1} D_{min}^{l}}{L}$$

Implementazione di una libreria ottimizzata per lavoro su GPU

• Disponibili librerie basate su Numpy (calcolo vettoriale) delle Self Organizing Maps (SOM).

https://github.com/JustGlowing/minisom.git

• Sviluppo di una libreria ottimizzata e più versatile per l'utilizzo di SOM in diversi contesti (fisici e non), basato sull'utilizzo di **pyTorch** per il calcolo tensoriale su GPU

Matteo Conte - IFAE, Firenze 3-5 Aprile 2024

A disposizione: <u>2 GPU's TESLA v100 - 32 GB</u>

Fino a $\times 10$ volte più veloce con la nuova libreria su GPU

K-Means algorithm

Selezione dataset 2 - 'Meta'

											- 1.00
∌-	1.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	- 0.75
Ø -	0.0	1.0	-0.1	-0.4	-0.5	-0.6	-0.1	-0.2	-0.6	0.0	- 0.50
ب -	0.0	-0.1	1.0	0.5	0.6	0.5	-0.5	-0.4	0.0	0.5	
t_{f}	-0.0	-0.4	0.5	1.0	0.8	0.8	-0.2	-0.2	0.5	0.3	- 0.25
t_r	-0.0	-0.5	0.6	0.8	1.0	1.0	-0.2	-0.2	0.5	0.3	
$t^{-\frac{1}{2}}$	-0.0	-0.6	0.5	0.8	1.0	1.0	-0.2	-0.2	0.6	0.3	- 0.00
SWCD	-0.0	-0.1	-0.5	-0.2	-0.2	-0.2	1.0	1.0	0.1	0.1	0.25
S ^{SSD}	-0.0	-0.2	-0.4	-0.2	-0.2	-0.2	1.0	1.0	0.1	0.1	
A peak	-0.0	-0.6	0.0	0.5	0.5	0.6	0.1	0.1	1.0	0.3	0.50
Ш -	0.0	0.0	0.5	0.3	0.3	0.3	0.1	0.1	0.3	1.0	0.75
	ų V	Ø	`	* _\$	* .(* ?	SWCD	SSD	Apeat	- - 	
											1.00

K=2, 2 PCA Components

Score

Accuracy Score (Train): 0.19581108931292882 Accuracy Score (Test): 0.19556767714094825