IFAE 2024

Incontri di Fisica delle Alte Energie (IFAE) 2024

Sessione Astroparticelle e Cosmologia

Firenze, 03/04/2024

EVOLUZIONE DELLA COSTANTE DI HUBBLE

IN TEORIE DI GRAVITÁ MODIFICATA f(R)

Speaker: Dr. Tiziano Schiavone - GGI Boost Fellow

A ERSTITUTE

università degli studi FIRENZE

EVOLUZIONE DELLA COSTANTE DI HUBBLE IN GRAVITÁ f(R)

- MODELLO COSMOLOGICO STANDARD ACDM E TENSIONE SULLA COSTANTE DI HUBBLE
- ANALISI IN INTERVALLI DI REDSHIFT DEL PANTHEON SAMPLE DI SNe la
- DECRESCITA DELLA COSTANTE DI HUBBLE CON IL REDSHIFT
- □ INTERPRETAZIONE TEORICA NEL JORDAN FRAME DELLE TEORIE DI GRAVITÁ MODIFICATA f(R)

CONCLUSIONI

On the Hubble Constant Tension in the SNe Ia Pantheon Sample arXiv:2103.02117 **ApJ** 912, 150 (2021)

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase

On the Evolution of the Hubble Constant with the SNe la Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030

Galaxies, 10, 24 (2022) arXiv:2201.09848

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase, M. Bogdan, S. Ugale

f(R) gravity in the Jordan Frame as a Paradigm for the Hubble Tension

arXiv:2211.16737 **MNRAS Letters**, 522, L72-L77 (2023)

Authors: TS, G. Montani, F. Bombacigno

C

RIKEN

Speaker SCHIAVONE TIZIANO

Slide 3 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

TENSIONE SULLA COSTANTE DI HUBBLE

Definizione della costante di Hubble

 $H_0 \equiv H(t = t_0) = H(z = 0)$

Speaker SCHIAVONE TIZIANO

CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53 Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60 Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

CMB without Planck

Dutcher et al. (2021), SPT: 68.8 ± 1.5 Aiola et al. (2020), ACT: 67.9 ± 1.5 Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 Zhang, Huang (2019), WMAP9+BAO: 68.36 $^{+053}_{-052}$

No CMB, with BBN

Colas et al. (2020), BOSS DR12+BBN: 68.7±1.5 Philcox et al. (2020), Pr+BAO+BBN: 68.6±1.1 Ivanov et al. (2020), BOSS+BBN: 67.9±1.1 Alam et al. (2020), BOSS+eBOSS+BBN: 67.35±0.97

Cepheids – SNIa

Riess et al. (2020), R20: 73.2 ± 1.3 Breuval et al. (2020): 72.8 ± 2.7 Riess et al. (2019), R19: 74.0 ± 1.4 Camarena, Marra (2019): 75.4 ± 1.7 Burns et al. (2018): 73.2 ± 2.3 Follin, Knox (2017): 73.3 ± 1.7 Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8 Riess et al. (2016), R16: 73.2 ± 1.7 Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1 Freedman et al. (2012): 74.3 ± 2.1

TRGB – SNIa

 $\begin{array}{l} \mbox{Soltis, Casertano, Riess (2020): 72.1 \pm 2.0 \\ \mbox{Freedman et al. (2020): 69.6 \pm 1.9 \\ \mbox{Reid, Pesce, Riess (2019), SH0ES: 71.1 \pm 1.9 \\ \mbox{Freedman et al. (2019): 69.8 \pm 1.9 \\ \mbox{Yuan et al. (2019): 72.4 \pm 2.0 \\ \mbox{Jang, Lee (2017): 71.2 \pm 2.5 } \end{array}$

Masers -

Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR)

Kourkchi et al. (2020): 76.0 ± 2.6 Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8

Surface Brightness Fluctuations

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Lensing related, mass model – dependent –

Yang, Birrer, Hu (2020): $H_0 = 73.65 \pm 25^{+2.95}_{-2.25}$ Millon et al. (2020), TDCOSMO: 74.2 ± 1.6 Qi et al. (2020): 73.6 \pm 1.8 Liao et al. (2020): 73.8 \pm 1.9 Liao et al. (2019): 72.2 ± 2.1 Shajib et al. (2019), STRIDES: 74.2 \pm 2.7 Wong et al. (2019), HOLICOW 2019: 73.3 \pm 1.8 Birrer et al. (2018), HOLICOW 2018: 72.5 \pm 5.2 Bonvin et al. (2016), HOLICOW 2016: 71.9 \pm 5.2 \pm

Optimistic average -Di Valentino (2021): 72.94 ± 0.75 -Ultra – conservative, no Cepheids, no lensing -Di Valentino (2021): 72.7 ± 1.1 -

DI VALENTINO et al. (2021), Class. Quant. Grav. 38, 153001

ANALISI IN BIN DEL PANTHEON SAMPLE

Tensione sulla costante di Hubble anche nell'intervallo di redshift delle SNe?

1048 SNe la spettroscopicamente confermate da varie surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH) Scolnic et al. (2018), ApJ 859, 101 Repository: https://github.com/dscolnic/Pantheon

- Sottocampioni con lo stesso numero di SNe:
 3, 4, 20, 40 intervalli di redshift
- Analisi statistica per ciascun intervallo di redshift incluse le matrici di covarianza statistica e sistematica delle SNe la χ² minimizzazione, metodo MCMC
- Fissato $\Omega_{m0} = 0.298$ per il modello Λ CDM [Scolnic et al. (2018), ApJ 859, 101]
- > Si ricava il valore di H_0 in ciascun intervallo di redshift
- > Uniform priors: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- > Test per controllare il valore di H_0 nei diversi intervalli di redshift DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

0.01 < *z* < 2.26

Slide 5 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

COSTANTE DI HUBBLE NON COSTANTE?

COSTANTE DI HUBBLE NON COSTANTE?

Slide 7 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Slide 8 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Slide 9 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

VALORI ESTRAPOLATI AD ALTI REDSHIFT

Modello ACDM

Bins	$H_0(z = 11.09)$	$H_0(z = 1100)$
	$({\rm km}~{\rm s}^{-1}~{\rm Mpc}^{-1})$	$(km s^{-1} Mpc^{-1})$
3	72.000 ± 0.805	69.219 ± 2.159
4	71.962 ± 1.049	69.271 ± 2.815
20	70.712 ± 1.851	66.386 ± 4.843
40	70.778 ± 1.609	65.830 ± 4.170

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Compatibile in 1 σ con le misure della CMB di Planck al redshift della superficie di ultimo scattering z=1100

$$H_0^{[CMB]} = (67.36 \pm 0.54) \ km \ s^{-1} \ Mpc^{-1}$$

PLANCK COLLABORATION *Planck 2018 result, VI: Cosmological parameters* A&A 641, A6 (2020).

Slide 10 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

POSSIBILI SPIEGAZIONI PER $H_0(z)$

Ragioni di natura astrofisica o problemi con il Pantheon sample

Nuova Fisica

Evoluzione con il redshift non considerata di parametri astrofisici di SNe la (stretch, metallicity, ...)

- □ Proprietà astrofisiche (galassie ospiti, effetti di selezione)
- Effetti di bias non considerati nel Pantheon sample
- □ Incertezze sistematiche nel campione

Modifica della gravità nell'Universo locale e/o nell'Universo primordiale?

Slide 12 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

GRAVITÁ MODIFICATA f(R) nel JORDAN FRAME

- Per estendere la Relatività Generale e risolvere problemi aperti in cosmologia grazie a gradi di libertà aggiuntivi
- Modifica geometrica della teoria di gravità
- > Si evita di introdurre ad hoc componenti nell'Universo, e.g. energia oscura
- > Lagrangiana gravitazionale generalizzata $\mathcal{L}_g = f(R)$ R: scalare di Ricci
- > Azione dinamicamente equivalente nel Jordan frame (JF), teoria scalar-tensoriale
- > Il grado di libertà extra di f(R) è convertito in un campo scalare ϕ
- > Accoppiamento non minimale tra la metrica ed il campo scalare

NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451

Speaker

SCHIAVONE TIZIANO

Potenziale

 $V(\phi) = R(\phi)\phi - f(R(\phi))$

GRAVITÁ MODIFICATA f(R) nel JORDAN FRAME

Azione dinamicamente equivalente alle teorie f(R)

Jordan frame (JF)

$$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} \left[\phi R - V(\phi) \right]$$

Per una metrica FLRW piatta:

Eq. di Friedmann generalizzata

$$H^2 = \frac{\chi \rho}{3 \phi} - H \frac{\dot{\phi}}{\phi} + \frac{V(\phi)}{6 \phi}$$

Eq. del campo scalare

$$3\ddot{\phi} - 2V(\phi) + \phi\frac{dV}{d\phi} + 9H\dot{\phi} = \chi\rho$$

Campo scalare

 $\phi = f'(R)$

Potenziale $V(\phi) = R(\phi)\phi - f(R(\phi))$

Eq. di accelerazione cosmica generalizzata

$$\frac{\ddot{a}}{a} = -\frac{\chi \rho}{6 \phi} + \frac{V(\phi)}{6 \phi} + \frac{1}{6} \frac{dV}{d\phi} + H \frac{\dot{\phi}}{\phi}$$

 χ : costante di Einstein

$$(\dots) = \partial_t(\dots)$$

COSMOLOGIA f(R)

- > Grado di libertà extra nella parametrizzazione, forma funzionale di f(R)
- Simulare il modello ACDM nel regime di alti redshift, ben descritto dalla CMB
- Espansione cosmica accelerata con una costante cosmologica efficace
- ➢ Fenomenologia del modello ∧CDM come caso limite

Hu-Sawicki

$$f(R) = R - m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1}$$

HU & SAWICKI (2007), Phys. Rev. D ,76, 064004

 c_1, c_2 parametri; n > 0 $m^2 \equiv \frac{\chi \rho_{m0}}{3}$

Starobinski
$$f(R) = R - \mu R_c \left[1 - \left(1 + \frac{R^2}{R_c^2} \right)^{-n} \right]$$

Tsujikawa
$$f(R) = R - \mu R_c \tanh\left(\frac{|R|}{R_c}\right)$$

 $n, \mu, R_c > 0$

STAROBINSKi (2007), Jetp Lett. 86, 157

TSUJIKAWA (2008), Phys. Rev. D, 77, 023507

AMENDOLA & TSUJIKAWA (2010), Cambridge University Press TSUJIKA

Speaker SCHIAVONE TIZIANO

Slide 14 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

- > Andamento decrescente di $H_0(z)$ dall'analisi in bin di SNe la + BAOs [1,2]
- > II modello $w_0 w_a$ CDM [3,4] e la teoria f(R) di Hu-Sawicki non possono spiegare $H_0(z)$ [1,2]
- > Necessità di un nuovo modello f(R) capace sia di simulare una componente di energia oscura che fornire un meccanismo per una costante di Hubble efficace
- > Il campo scalare non-minimalmente accoppiato svolge un ruolo cruciale
- Objectivo: costante di Hubble efficace che evolve con z per conciliare $H_0^{[CMB]} = (67.36 \pm 0.54) \, \text{km s}^{-1} \, \text{Mpc}^{-1} \quad \text{e} \quad H_0^{[loc]} = (73.04 \pm 1.04) \, \text{km s}^{-1} \, \text{Mpc}^{-1}$

[1] DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150
[2] DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

[3] CHEVALLIER & POLARSKI (2001), Int. J. Mod. Phys. D 10, 213

[4] LINDER (2000), Phys. Rev. Lett. 90, 091301

Eq. di Friedmann generalizzata:

$$H^{2} = \frac{1}{\phi - (1+z)\frac{d\phi}{dz}}\frac{\chi}{3}\left[\rho + \frac{V(\phi)}{2\chi}\right]$$

Approssimazione:
piccola deviazione $V(\phi) \equiv 2\chi \rho_{\Lambda} + g(\phi)$ da Λ CDM $g(\phi) \ll V(\phi)$

Si ottiene una forma simile a quella di un modello ACDM piatto, ma con

una costante di Hubble efficace

 $H^{[\Lambda CDM]}(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}}$ $H(z) \approx H_0^{\text{eff}}(z) \sqrt{\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}}$

$$H_0^{\text{eff}}(z) = \frac{H_0}{\sqrt{\phi - (1+z)\frac{d\phi}{dz}}}$$

SCHIAVONE, MONTANI, & BOMBACIGNO (2023), MNRAS Letters, 522, L72-L77

Risolvendo la dinamica cosmologica nel JF, si ricostruisce analiticamente la forma del potenziale del campo scalare ed infine l'espressione di f(R)

Slide 17 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Slide 18 IFAE 03/04/2024, Firenze – *Evoluzione della costante di Hubble in teorie di gravità modificata f(R)*

Si può mostrare che si recupera Λ CDM per $\alpha \rightarrow 0 e K \rightarrow 1$

CONCLUSIONI

- > Analisi in bin del Pantheon sample di SNe Ia (bassi redshift)
- Inaspettata evoluzione e andamento decrescente di $H_0(z)$ per diverse suddivisioni in bin e diversi modelli cosmologici
- ➢ Una ridefinizione della costante di Hubble che evolve con z fornisce una nuova interpretazione della tensione su H_0 : potrebbe non essere più dovuta a discrepanze tra sorgenti locali e i dati di Planck, ma ad un comportamento evolutivo intrinseco di $H_0(z)$ in un contesto di gravità modificata f(R)
- > Nuovi dati in futuro (Euclid, LSST, DESY, etc.) e utilizzo di altre sorgenti (Pantheon+, quasars, GRBs, etc.) per ottenere migliori vincoli sul parametro α
- > Possibili segnali di nuova Fisica (gravità modificata?)

GRAZIE PER L'ATTENZIONE

tiziano.schiavone@phd.unipi.it

tschiavone@fc.ul.pt

GGI Boost Fellow

Galileo Galilei Institute for Theoretical Physics (GGI)

Largo Enrico Fermi 2, 50125 Firenze

Slide 21 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Backup slides

Slide 22 IFAE 03/04/2024, Firenze – *Evoluzione della costante di Hubble in teorie di gravità modificata f(R)*

DISTANZA DI LUMINOSITÁ d_L

 $E(z) = \sqrt{\Omega_{m0} (1+z)^3 + \Omega_{r0} (1+z)^4 + \Omega_{\Lambda}}$

 $d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$

 d_L dipende dal modello cosmologico adottato.

Per una geometria piatta (k = 0):

➢ Modello ∧CDM

Modello wCDM

w = w(z)

$$E(z) = \int \Omega_{m0} (1+z)^3 + \Omega_{r0} (1+z)^4 + \Omega_{DE0} \exp\left[3 \int_0^z \frac{dz'}{1+z'} (1+w(z'))\right]$$

 $w(z) = w_0 + \frac{w_a z}{1+z}$ Parametrizzazione CPL (Chevallier-Polarski-Linder)

 $H(z) = H_0 E(z)$

CHEVALLIER & POLARSKI (2001), Int. J. Mod. Phys. D 10, 213 LINDER (2000), Phys. Rev. Lett. 90, 091301

Speaker

SCHIAVONE TIZIANO

 Ω_{i0} : parametro di

m: materia

r. radiaziono

densità cosmologica

N

DISTANCE MODULUS μ

Dal modello teorico cosmologico considerato:

ANALISI DEL PANTHEON SAMPLE

1048 SNe la spettroscopicamente confermate ottenute da varie surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH)

0.01 < z < 2.26

Speaker

SCHIAVONE TIZIANO

ANALISI DEL PANTHEON SAMPLE

$$C = D_{stat} + C_{sys}$$

Matrice statistica

(matrice diagonale, 1048x1048) Include errori σ^2 sulla distanza per ciascuna SN C_{SYS} Matrice di covarianza sistematica
(1048x1048)Include N sistematiche (S_k) sorgenti
di errori

$$\sigma^{2} = \sigma_{N}^{2} + \sigma_{mass}^{2} + \sigma_{\mu-z}^{2} + \sigma_{lens}^{2} + \sigma_{int}^{2} + \sigma_{bias}^{2}$$
Errore
dovuto alla
fotometria
Correzione
mass-step
gravitazionale
di bias

 $C_{ij,sys} = \sum_{k=1}^{N} \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} \sigma_{S_k}^2$

 S_k : sistematiche $\rightarrow (m_B, x_1, c, m_B c, x_1 m_B, x_1 c)$

 σ_{S_k} : errore sistematico

Slide 26 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

ANALISI IN BIN DEL PANTHEON SAMPLE

Hubble constant tension within the SNe Ia redshift range?

0.01 < *z* < 2.26

- Sottocampioni con lo stesso numero di SNe Ia: 3, 4, 20, 40 redshift bins
- Si costruiscono sottomatrici *C* e sottovettori $\Delta \mu$, considerando l'ordine in redshift delle SNe
- > Analisi statistica in ogni intervallo di redshift, minimizzazione χ^2 , metodo MCMC
- > Prior uniformi: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- > Si parte dal valore locale nel 1° bin: $H_0 = 73.5 \ km \ s^{-1} \ Mpc^{-1}$
- > Fissato $\Omega_{m0} = 0.298$ per il modello Λ CDM
- Fissati Ω_{m0} = 0.308, w₀ = −1.009, w_a = −0.129 per il modello w₀w_aCDM
- > Si ricavano i valori di H_0 in ciascun intervallo di redshift

Test: fit non lineare
$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

 α : parametro evolutivo
$$\widetilde{H}_0 = H_0(z=0)$$

COSTANTE DI HUBBLE NON COSTANTE?

Slide 29 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

VALORI ESTRAPOLATI AD ALTI REDSHIFT

	Modello $w_0 w_a CDM$		
Bins	$H_0(z = 11.09)$	$H_0(z = 1100)$	
	$(km s^{-1} Mpc^{-1})$	$(km s^{-1} Mpc^{-1})$	
3	72.104 ± 0.766	69.516 ± 2.060	
4	71.975 ± 1.020	69.272 ± 2.737	
20	70.852 ± 1.937	66.804 ± 5.093	
40	70.887 ± 1.595	66.103 ± 4.148	

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Compatibile in 1 σ con le misure della CMB di Planck al redshift della superficie di ultimo scattering z=1100

$$H_0^{[PLANCK]} = (67.4 \pm 0.5) km \, s^{-1} \, Mpc^{-1}$$

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

Slide 30 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

SNe + BAOs, ANALISI IN BIN

- □ 3 intervalli di redshift (≈ 350 SNe in ciascun bin)
- Due parametri liberi per MCMC
 H₀ e Ω_{m0} per il modello ΛCDM
 H₀ e w_a per il modello w₀w_aCDM
- □ M = -19.35 tale che localmente (nel primo bin) si ha:

 $H_0 = 70.0 \ km \ s^{-1} \ Mpc^{-1}$

(valore convenzionale per il Pantheon sample)

□ Si includono nuove probes, BAOs

□ Prior Gaussiane: $\mu(H_0) = 70.393 \ km \ s^{-1} \ Mpc^{-1}$ $\sigma(H_0) = 2 * 1.079 \ km \ s^{-1} \ Mpc^{-1}$ $\mu(\Omega_{m0}) = 0.298 \qquad \sigma(\Omega_{m0}) = 2 * 0.022$ [arXiv:1710.00845 in 2 σ] $\mu(w_a) = -0.129$ $\sigma(w_a)$: 20 % deviazione dal valore centrale

G Fissato $w_0 = -0.905$ arXiv:1710.00845

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

SNe + BAOs, ANALISI IN BIN

RELATIVITÁ GENERALE GRAVITÁ MODIFICATA f(R)

 $G_{\mu\nu} = \chi T_{\mu\nu}$

Energia oscura → modifica delle sorgenti Modifica geometrica della teoria gravitazionale

$\mathcal{L}_{EH}=R$ Einstein-Hilbert	Densità di Lagrangiana gravitazionale	$\mathcal{L}_g = f(R)$ Grado di libertà extra
$S_{EH} = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} R$	Azione gravitazionale	$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} f(R)$
$G_{\mu u} = \chi T_{\mu u}$	Eq. del campo gravitazionale	$f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R) - \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu}$
NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451	calare di Ricci $f'(R) \equiv$	$rac{df}{dR}$ ∇_{μ} : derivata covariante

Slide 33 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

TEORIE DI GRAVITÁ MODIFICATA f(R)

Modifica geometrica della teoria gravitazionale

 $\mathcal{L}_g = f(R) = \mathbf{R} + \mathbf{F}(R)$

Deviazione dalla teoria di Einstein-Hilbert

Eq. del campo gravitazionale modificate

$$f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R) - \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu}$$

$$G_{\mu\nu} = \chi \left(T_{\mu\nu} + T_{\mu\nu}^{[F]} \right)$$

Modifica esplicita delle equazioni di Einstein-Hilbert I contributi geometrici non-Einsteiniani possono essere considerati come una sorgente efficace di materia

$$T_{\mu\nu}^{[F]} = -\frac{1}{\chi} \left[F'(R) R_{\mu\nu} - \frac{1}{2} F(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} F'(R) - \nabla_{\mu} \nabla_{\nu} F'(R) \right]$$

MODELLO f(R) **DI** HU-SAWICKI

1

Formalismo metrico
$$f(R)$$

 $n = 1$

$$f(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1}$$
 c_1, c_2 parametri
 $m^2 \equiv \frac{\chi \rho_{m0}}{3} = H_0^2 \Omega_{m0}$

Jordan frame (formalismo equivalente scalartensoriale)

$$V(\phi) = \frac{m^2}{c_2} \left[c_1 + 1 - \phi - 2\sqrt{c_1 \left(1 - \phi\right)} \right]$$

 \Box Costante cosmologica per $R \gg m^2$

 $f(R) \approx R - 2\Lambda_{eff} \quad \text{con} \quad \Lambda_{eff} = \frac{c_1}{c_2} m^2$

□ Si vincolano i parametri, considerando ∧CDM come caso limite con f(R) = R + F(R)

$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{0\Lambda}}{\Omega_{0m}} \quad e \quad F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4\frac{\Omega_{0\Lambda}}{\Omega_{0m}}\right)\right]^{-2} \quad \text{con} \quad |F_R(z=0)| < 10^{-7}$$

Liu, T., Zhang, X., & Zhao, W., Phys. Lett. B, 777, 286 (2018)

Speaker

SCHIAVONE TIZIANO

DISTANZA DI LUMINOSITÁ IN GRAVITÁ f(R)

(arXiv: 0705.1158)

Variabili adimensionali

$$y_H = \frac{H^2}{m^2} - (1+z)^3$$

$$y_R = \frac{R}{m^2} - 3 (1+z)^3$$

 $y_H(z)$ racchiude le informazioni per uno specifico

 $d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} \left[(1+z')^3 + \gamma_H(z')\right]}}$

modello f(R).

Le equazioni di campo modificate possono essere risolte

numericamente in termini di y_H , y_R e le loro derivate

Condizioni iniziali:
$$z_i$$

$$y_H(z_i) = \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

$$y_R(z_i) = 12 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

ANALISI IN BIN CON IL MODELLO f(R) DI HU-SAWICKI

$$f(R) \equiv R + F(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1}$$

 $y_H(z)$ racchiude le informazioni per uno specifico modello f(R).

Le equazioni di campo modificate possono essere risolte numericamente in termini di y_H , y_R

e le loro derivate

$$d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} \left[(1+z')^3 + y_H(z')\right]}}$$

$$y_{H} = \frac{\pi}{m^{2}} - (1+z)^{3}$$
2.35570
2.35570
- Numerical solution
- Polynomial fitting
0.0
0.5
1.0
1.5
2.0
Redshift (z)

<u>и</u>2

$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}} \quad \text{e} \quad F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4\frac{\Omega_{\Lambda 0}}{\Omega_{m0}}\right)\right]^{-2} \quad \text{con} \quad |F_R(z=0)| < 10^{-7}$$

ANALISI IN BIN CON IL MODELLO f(R) DI HU-SAWICKI

Figure 6. The Hubble constant versus redshift plots for the three bins of SNe Ia only, considering the Hu–Sawicki model. **Upper left panel.** The condition of $F_{R0} = -10^{-7}$ is applied to the case of SNe only, with the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. **Upper right panel.** The same of the upper left, but with the contribution of BAOs. Lower left panel. The SNe only case with the $F_{R0} = -10^{-4}$ condition, considering the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. Lower right panel. The same as the lower left, but with the contribution of BAOs. The orange color refers to $\Omega_{0m} = 0.301$, the red to $\Omega_{0m} = 0.303$, the magenta to $\Omega_{0m} = 0.305$, and the blue to $\Omega_{0m} = 0.298$.

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022),

Galaxies 2022, 10, 24

Slide 38 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Slide 39 IFAE 03/04/2024, Firenze – Evoluzione della costante di Hubble in teorie di gravità modificata f(R)

Il profilo f(R) a bassi redshift

Per $z \ll 1$:

R

 $\phi(z) \approx K(1+2\alpha z) + O(z^3)$

$$\tilde{V}(\phi) \approx \tilde{V}(K) + A_1 (\phi - K) + A_2 (\phi - K)^2 + O[(\phi - K)^3]$$

Relazioni nel Jordan frame

$$=\frac{dV}{d\phi} \qquad V(\phi) = R(\phi)\phi - f(R(\phi))$$

$$f(R) \approx m^2 B_0 + B_1 R + B_2 \frac{R^2}{m^2}$$

Soluzione approssimate per $z \ll 1$: f(R) – quadratic gravity

Si può mostrare che si riottiene \land CDM per $\alpha \rightarrow 0$ e $K \rightarrow 1$

SCHIAVONE, MONTANI, & BOMBACIGNO (2023), MNRAS Letters, 522, L72-L77

dove le costanti adimensionali A_i e

 B_i sono legate algebricamente ai

valori di α , Ω_{m0} e K