IFAE 2024

Incontri di Fisica delle Alte Energie (IFAE) 2024

Sessione Astroparticelle e Cosmologia

Firenze, 03/04/2024

EVOLUZIONE DELLA COSTANTE DI HUBBLE IN TEORIE DI GRAVITÀ MODIFICATA f(R)

Speaker: Dr. Tiziano Schiavone - GGI Boost Fellow

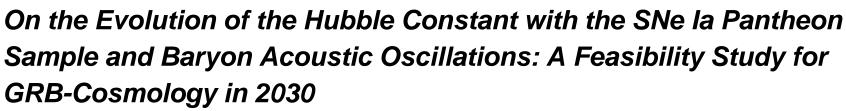
EVOLUZIONE DELLA COSTANTE DI HUBBLE IN GRAVITÁ f(R)

- MODELLO COSMOLOGICO STANDARD ∧CDM E TENSIONE SULLA COSTANTE DI HUBBLE
- ANALISI IN INTERVALLI DI REDSHIFT DEL PANTHEON SAMPLE DI SNe la
- DECRESCITA DELLA COSTANTE DI HUBBLE CON IL REDSHIFT
- INTERPRETAZIONE TEORICA NEL JORDAN FRAME DELLE TEORIE DI GRAVITÁ MODIFICATA f(R)
- CONCLUSIONI

On the Hubble Constant Tension in the SNe la Pantheon Sample

arXiv:2103.02117 **ApJ** 912, 150 (2021)

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase



Galaxies, 10, 24 (2022) arXiv:2201.09848

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase, M. Bogdan,

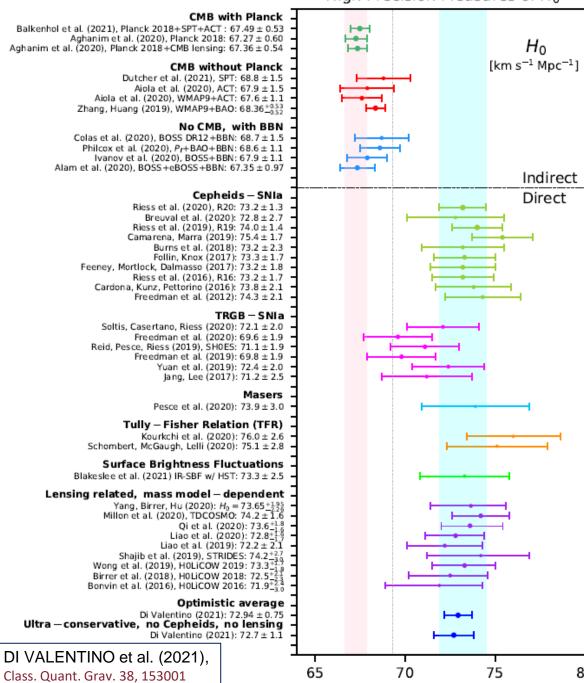
S. Ugale

f(R) gravity in the Jordan Frame as a Paradigm for the Hubble Tension

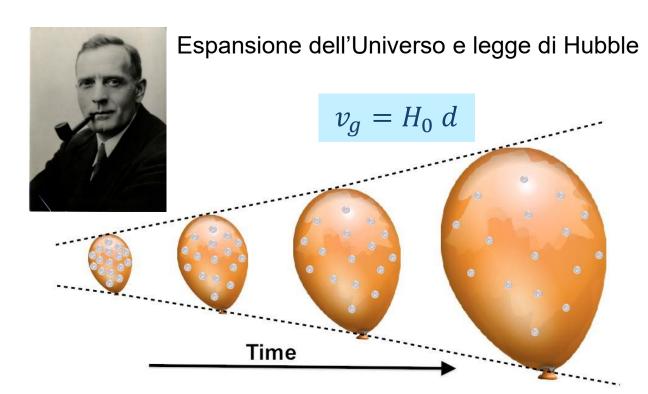
arXiv:2211.16737 MNRAS Letters, 522, L72-L77 (2023)

Authors: TS, G. Montani, F. Bombacigno

High Precision Measures of H₀



TENSIONE SULLA COSTANTE DI HUBBLE



Definizione della costante di Hubble

$$H_0 \equiv H(t=t_0) = H(z=0)$$

Speaker SCHIAVONE TIZIANO

ANALISI IN BIN DEL PANTHEON SAMPLE

Tensione sulla costante di Hubble anche nell'intervallo di redshift delle SNe?

1048 SNe la spettroscopicamente confermate da varie surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH)
Scolnic et al. (2018), ApJ 859, 101 Repository: https://github.com/dscolnic/Pantheon

0.01 < z < 2.26

- Sottocampioni con lo stesso numero di SNe:3, 4, 20, 40 intervalli di redshift
- Analisi statistica per ciascun intervallo di redshift incluse le matrici di covarianza statistica e sistematica delle SNe la χ^2 minimizzazione, metodo MCMC
- ightharpoonup Fissato $\Omega_{m0}=0.298$ per il modello ΛCDM [Scolnic et al. (2018), ApJ 859, 101]
- \triangleright Si ricava il valore di H_0 in ciascun intervallo di redshift
- \triangleright Uniform priors: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- Test per controllare il valore di H_0 nei diversi intervalli di redshift DAINOTTI, DE SIMONE, **SCHIAVONE**, et al. (2021), ApJ 912, 150

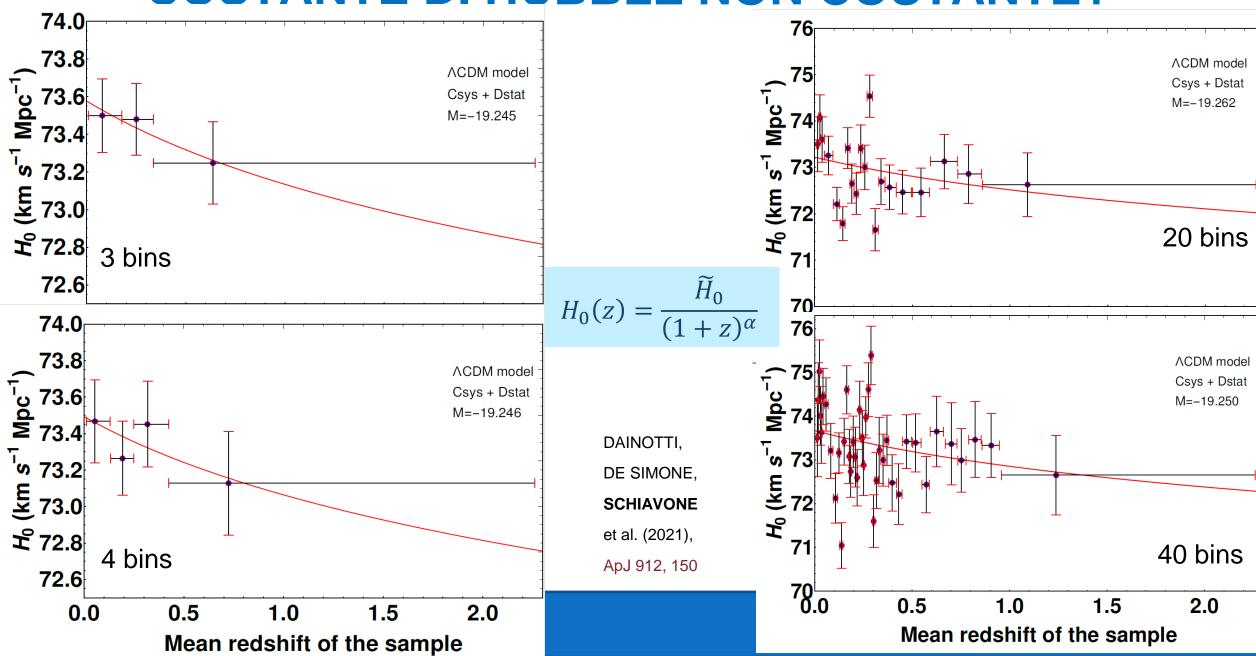
Test: fit non lineare

$$H_0(z) = \frac{\tilde{H}_0}{(1+z)^{\alpha}}$$

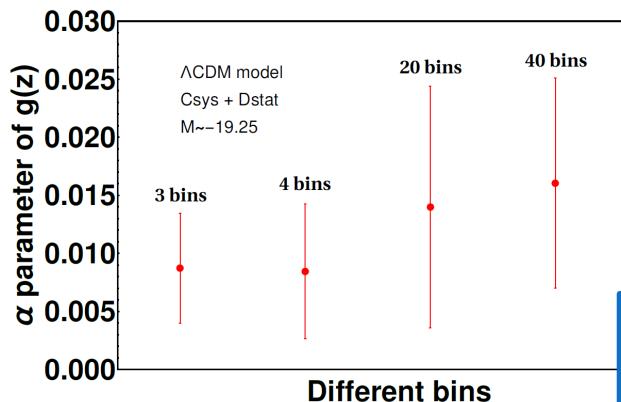
 α : parametro evolutivo

$$\widetilde{H}_0 = H_0(z=0)$$

COSTANTE DI HUBBLE NON COSTANTE?



COSTANTE DI HUBBLE NON COSTANTE?



$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

 $\alpha = 0 \rightarrow \text{nessuna evoluzione}$

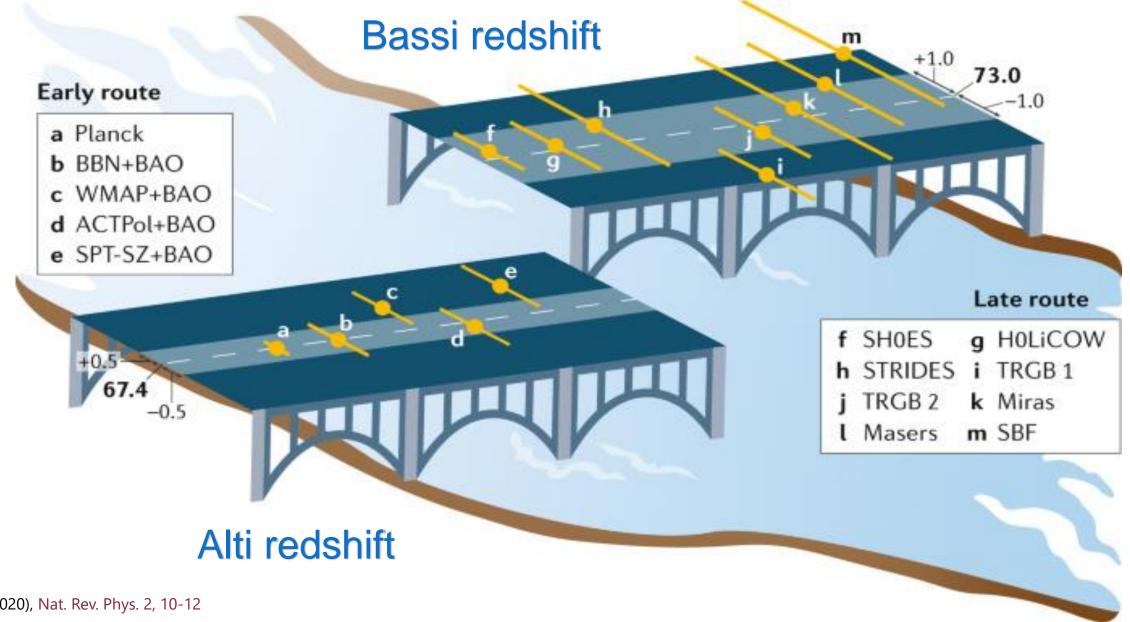
Intervallo di confidenza, 1 σ

RISULTATI DEL FIT - MODELLO ΛCDM

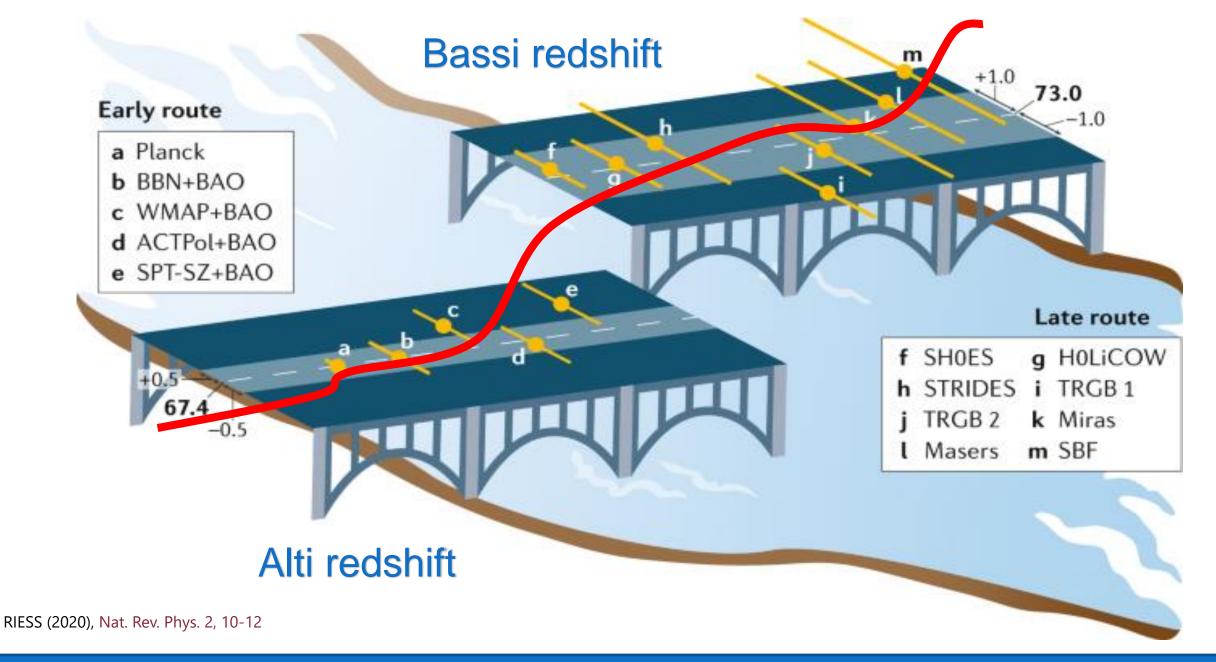
	Bins	$ ilde{H}_0$	α	$\frac{\alpha}{\sigma_{\Omega}}$	М
		$(\mathrm{km}\;\mathrm{s}^{-1}\mathrm{Mpc}^{-1})$		u .	
	3	73.577 ± 0.106	0.009 ± 0.004	2.0	-19.245 ± 0.006
	4	73.493 ± 0.144	0.008 ± 0.006	1.5	-19.246 ± 0.008
	20	73.222 ± 0.262	0.014 ± 0.010	1.3	-19.262 ± 0.014
	40	73.669 ± 0.223	0.016 ± 0.009	1.8	-19.250 ± 0.021

Debole ed inaspettata evoluzione di $H_0(z)$

DAINOTTI, DE SIMONE, **SCHIAVONE**, et al. (2021), ApJ 912, 150



RIESS (2020), Nat. Rev. Phys. 2, 10-12



VALORI ESTRAPOLATI AD ALTI REDSHIFT

Modello ΛCDM

Bins	$H_0(z=11.09)$	$H_0(z=1100)$
	$(\text{km s}^{-1} \text{Mpc}^{-1})$	$(\mathrm{km}\;\mathrm{s}^{-1}\mathrm{Mpc}^{-1})$
3	72.000 ± 0.805	69.219 ± 2.159
4	71.962 ± 1.049	69.271 ± 2.815
20	70.712 ± 1.851	66.386 ± 4.843
40	70.778 ± 1.609	65.830 ± 4.170

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Compatibile in 1 σ con le misure della CMB di Planck al redshift della superficie di ultimo scattering z=1100

$$H_0^{[CMB]} = (67.36 \pm 0.54) \ km \ s^{-1} \ Mpc^{-1}$$

PLANCK COLLABORATION

Planck 2018 result, VI: Cosmological parameters

A&A 641, A6 (2020).

POSSIBILI SPIEGAZIONI PER $H_0(z)$

Ragioni di natura astrofisica o problemi con il Pantheon sample

Nuova Fisica

- □ Evoluzione con il redshift non considerata di parametri astrofisici di SNe la (stretch, metallicity, ...)
- ☐ Proprietà astrofisiche (galassie ospiti, effetti di selezione)
- ☐ Effetti di bias non considerati nel Pantheon sample
- ☐ Incertezze sistematiche nel campione

■ Modifica della gravità nell'Universo locale e/o nell'Universo primordiale?

GRAVITÁ MODIFICATA f(R) nel JORDAN FRAME

- Per estendere la Relatività Generale e risolvere problemi aperti in cosmologia grazie a gradi di libertà aggiuntivi
- Modifica geometrica della teoria di gravità
- Si evita di introdurre ad hoc componenti nell'Universo, e.g. energia oscura
- Lagrangiana gravitazionale generalizzata $\mathcal{L}_q = f(R)$ R: scalare di Ricci

Campo scalare

> Azione dinamicamente equivalente nel Jordan frame (JF), teoria scalar-tensoriale

$$\phi = f'(R)$$

- \triangleright II grado di libertà extra di f(R) è convertito in un campo scalare ϕ
- > Accoppiamento non minimale tra la metrica ed il campo scalare

$$V(\phi) = R(\phi)\phi - f(R(\phi))$$

NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451

GRAVITÁ MODIFICATA f(R) nel JORDAN FRAME

Azione dinamicamente equivalente alle teorie f(R)

Jordan frame (JF)

$$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} \ [\phi R - V(\phi)]$$

Per una metrica FLRW piatta:

Eq. di Friedmann generalizzata

$$H^2 = \frac{\chi \rho}{3 \phi} - H \frac{\dot{\phi}}{\phi} + \frac{V(\phi)}{6 \phi}$$

Eq. del campo scalare

$$3\ddot{\phi} - 2V(\phi) + \phi \frac{dV}{d\phi} + 9H\dot{\phi} = \chi \rho$$

Campo scalare

$$\phi = f'(R)$$

Potenziale

$$V(\phi) = R(\phi)\phi - f(R(\phi))$$

Eq. di accelerazione cosmica generalizzata

$$\frac{\ddot{a}}{a} = -\frac{\chi \rho}{6 \phi} + \frac{V(\phi)}{6 \phi} + \frac{1}{6} \frac{dV}{d\phi} + H \frac{\dot{\phi}}{\phi}$$

 χ : costante di Einstein (

$$(\dot{\dots}) = \partial_t(\dots)$$

COSMOLOGIA f(R)

- \triangleright Grado di libertà extra nella parametrizzazione, forma funzionale di f(R)
- > Simulare il modello ΛCDM nel regime di alti redshift, ben descritto dalla CMB
- Espansione cosmica accelerata con una costante cosmologica efficace
- > Fenomenologia del modello ΛCDM come caso limite

Hu-Sawicki
$$f(R) = R - m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1}$$

$$c_1, c_2$$
 parametri; $n > 0$ $m^2 \equiv \frac{\chi \rho_{m0}}{3}$

HU & SAWICKI (2007), Phys. Rev. D ,76, 064004

AMENDOLA & TSUJIKAWA (2010), Cambridge University Press

Starobinski
$$f(R) = R - \mu R_c \left[1 - \left(1 + \frac{R^2}{R_c^2} \right)^{-n} \right]$$

Tsujikawa
$$f(R) = R - \mu R_c \tanh\left(\frac{|R|}{R_c}\right)$$
 $n, \mu, R_c >$

STAROBINSKi (2007), Jetp Lett. 86, 157

TSUJIKAWA (2008), Phys. Rev. D, 77, 023507

- \triangleright Andamento decrescente di $H_0(z)$ dall'analisi in bin di SNe la + BAOs [1,2]
- \rightarrow II modello w_0w_a CDM [3,4] e la teoria f(R) di Hu-Sawicki non possono spiegare $H_0(z)$ [1,2]
- \blacktriangleright Necessità di un nuovo modello f(R) capace sia di simulare una componente di energia oscura che fornire un meccanismo per una costante di Hubble efficace
- ➤ Il campo scalare non-minimalmente accoppiato svolge un ruolo cruciale
- > Obiettivo: costante di Hubble efficace che evolve con z per conciliare

$$H_0^{[CMB]} = (67.36 \pm 0.54) \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1} \quad \mathrm{e} \quad H_0^{[loc]} = (73.04 \pm 1.04) \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$$

- [1] DAINOTTI, DE SIMONE, **SCHIAVONE**, et al. (2021), ApJ 912, 150
- [2] DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

- [3] CHEVALLIER & POLARSKI (2001), Int. J. Mod. Phys. D 10, 213
- [4] LINDER (2000), Phys. Rev. Lett. 90, 091301

Eq. di Friedmann generalizzata:

$$H^{2} = \frac{1}{\phi - (1+z)\frac{d\phi}{dz}} \frac{\chi}{3} \left[\rho + \frac{V(\phi)}{2\chi} \right]$$

Approssimazione: piccola deviazione da ΛCDM

$$V(\phi) \equiv 2\chi \rho_{\Lambda} + g(\phi)$$
$$g(\phi) \ll V(\phi)$$

Si ottiene una forma simile a quella di un modello ΛCDM piatto, ma con una costante di Hubble efficace

$$H^{[\Lambda CDM]}(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}}$$

$$H(z) \approx H_0^{\rm eff}(z) \sqrt{\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}}$$

$$H_0^{\text{eff}}(z) = \frac{H_0}{\sqrt{\phi - (1+z)\frac{d\phi}{dz}}}$$

SCHIAVONE,

MONTANI, &

BOMBACIGNO

(2023), MNRAS

Letters, 522, L72-L77

Risolvendo la dinamica cosmologica nel JF, si ricostruisce analiticamente la forma del potenziale del campo scalare ed infine l'espressione di f(R)

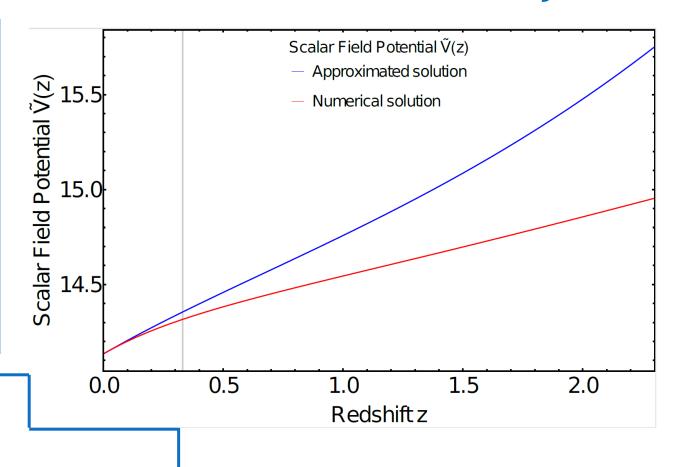
Soluzione analitica approssimata

$$\phi(z) = K (1+z)^{2\alpha}$$

$$H_0^{\text{eff}}(z) = \frac{H_0}{\sqrt{K(1-2\alpha)}(1+z)^{\alpha}}$$

$$\tilde{V}(\phi) = \frac{V(\phi)}{m^2}$$

 $\tilde{V}(\phi) = \frac{V(\phi)}{m^2}$ Si veda l'espressione in *



Condizioni per conciliare $H_0^{[CMB]}$ and $H_0^{[loc]}$:

$$\phi(0) = K = 1 - 10^{-7}$$

$$\alpha = 1.1 \times 10^{-2}$$

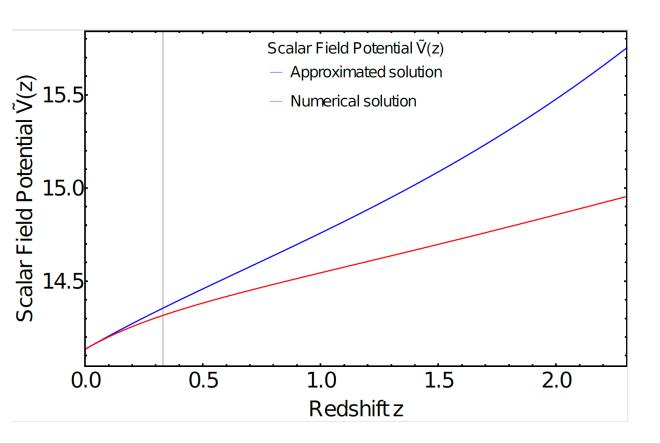
$$H_0 = 72.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

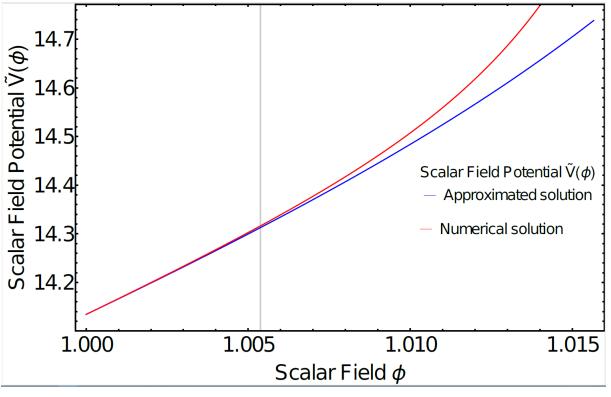
$$\Omega_{m0} = 0.298$$

$$\tilde{V}(\phi = K) = \tilde{V}(z = 0) = 6\frac{1 - \Omega_{m0}}{\Omega_{m0}}$$
ACDM today

* SCHIAVONE, MONTANI, & BOMBACIGNO

(2023), MNRAS Letters, 522, L72-L77

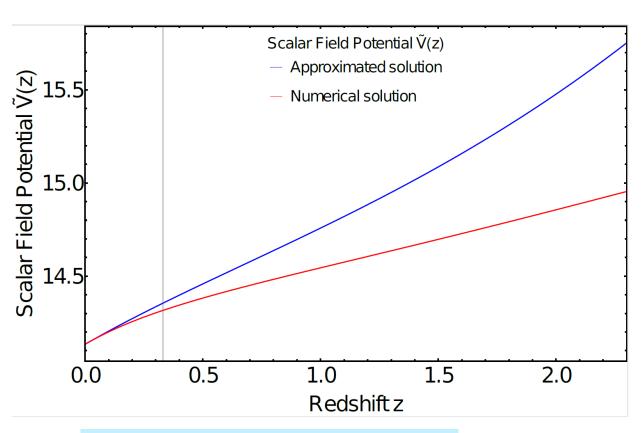


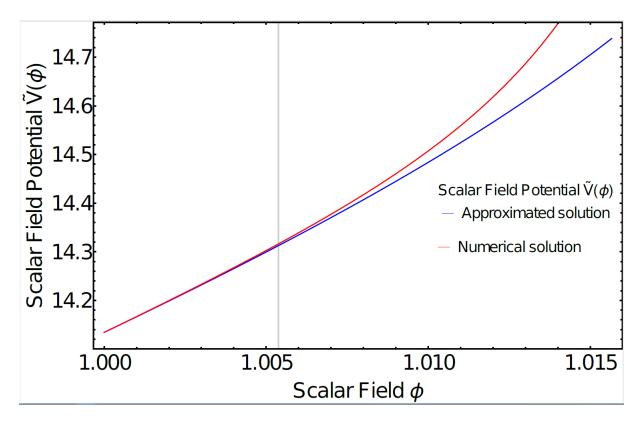


Variazione percentuale di $\tilde{V} \sim 1.6\%$ Regione quasi piatta per 0 < z < 0.3

$$\tilde{V}(\phi) = \frac{V(\phi)}{m^2}$$

SCHIAVONE, MONTANI, & BOMBACIGNO (2023), MNRAS Letters, 522, L72-L77





$$f(R) \approx m^2 B_0 + B_1 R + B_2 \frac{R^2}{m^2}$$

Soluzione approssimata per $z \ll 1$: f(R) — modello quadratico della gravità

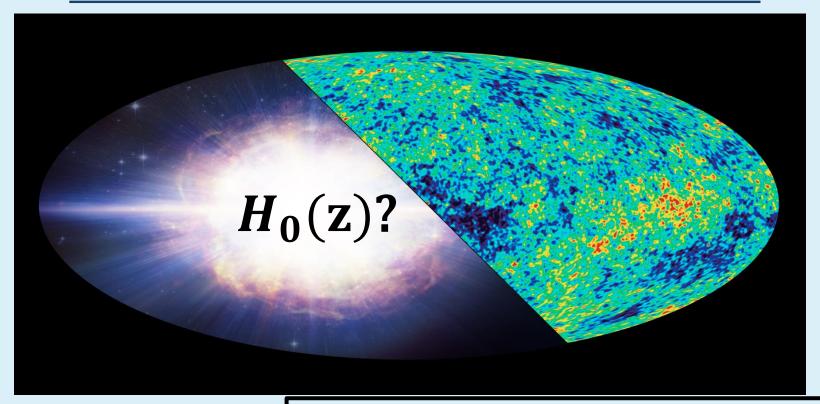
SCHIAVONE, MONTANI, & BOMBACIGNO (2023), MNRAS Letters, 522, L72-L77

Si può mostrare che si recupera Λ CDM per $\alpha \rightarrow 0$ e $K \rightarrow 1$

CONCLUSIONI

- ➤ Analisi in bin del Pantheon sample di SNe la (bassi redshift)
- \blacktriangleright Inaspettata evoluzione e andamento decrescente di $H_0(z)$ per diverse suddivisioni in bin e diversi modelli cosmologici
- Una ridefinizione della costante di Hubble che evolve con z fornisce una nuova interpretazione della tensione su H_0 : potrebbe non essere più dovuta a discrepanze tra sorgenti locali e i dati di Planck, ma ad un comportamento evolutivo intrinseco di $H_0(z)$ in un contesto di gravità modificata f(R)
- ightharpoonup Nuovi dati in futuro (Euclid, LSST, DESY, etc.) e utilizzo di altre sorgenti (Pantheon+, quasars, GRBs, etc.) per ottenere migliori vincoli sul parametro α
- Possibili segnali di nuova Fisica (gravità modificata?)

GRAZIE PER L'ATTENZIONE



<u>tiziano.schiavone@phd.unipi.it</u> <u>tschiavone@fc.ul.pt</u> **GGI Boost Fellow**

Galileo Galilei Institute for Theoretical Physics (GGI)

Largo Enrico Fermi 2, 50125 Firenze

Backup slides

DISTANZA DI LUMINOSITÁ d_L

 d_L dipende dal modello cosmologico adottato.

$$d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

 $H(z) = H_0 E(z)$

Per una geometria piatta (k = 0):

Modello ΛCDM

$$E(z) = \sqrt{\Omega_{m0} (1+z)^3 + \Omega_{r0} (1+z)^4 + \Omega_{\Lambda}}$$

 Ω_{i0} : parametro di densità cosmologica

m: materia

r: radiazione

Modello wCDM

$$w = w(z)$$

$$E(z) = \sqrt{\Omega_{m0} (1+z)^3 + \Omega_{r0} (1+z)^4 + \Omega_{DE0} \exp\left[3 \int_0^z \frac{dz'}{1+z'} (1+w(z'))\right]}$$

Modello w₀w_aCDM

$$w(z) = w_0 + \frac{w_a z}{1+z}$$

Parametrizzazione CPL

(Chevallier-Polarski-Linder)

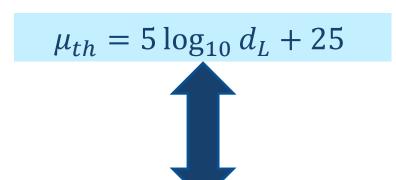
CHEVALLIER & POLARSKI (2001),

Int. J. Mod. Phys. D 10, 213

LINDER (2000), Phys. Rev. Lett. 90, 091301

DISTANCE MODULUS μ

Dal modello teorico cosmologico considerato:



TRIPP (1998), A&A 331, 815

BETOULE et al. (2014), A&A 568, A22

SCOLNIC et al. (2018), ApJ 859, 101

Dalle osservazioni di SNe la:

 $\mu_{obs} = m_B - M + \alpha x_1 - \beta c + \Delta M + \Delta B$ Formula di Tripp modificata Correzione di bias B-band magnitudine Correzione dovuta Magnitudine apparente alla massa della Parametro di **Parametro** assoluta per galassia ospite stretch colore $x_1 = 0 = c$

ANALISI DEL PANTHEON SAMPLE

1048 SNe la spettroscopicamente confermate ottenute da varie surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH)

Analisi statistica:

$$\chi^2 = \Delta \mu^T C^{-1} \Delta \mu$$

dove

$$\Delta\mu = \mu_{obs} - \mu_{th}$$

 $C = D_{stat} + C_{sys}$

Distance modulus teorico

$$\mu_{th} = 5\log_{10} d_L + 25$$

Pacchetto Cobaya in Python per minimizzare χ^2

Scolnic et al. (2018), ApJ 859, 101

Repository: https://github.com/dscolnic/Pantheon

Matrice statistica (matrice diagonale, 1048x1048)

Matrice di incertezza C (1048x1048)

Matrice di covarianza sistematica (simmetrica, 1048x1048)

ANALISI DEL PANTHEON SAMPLE

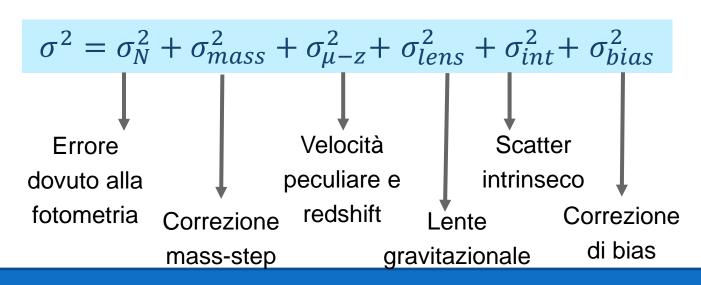
$$C = D_{stat} + C_{sys}$$

 D_{stat}

Matrice statistica (matrice diagonale, 1048x1048) Include errori σ^2 sulla distanza per ciascuna SN

 C_{sys}

Matrice di covarianza sistematica (1048x1048) Include N sistematiche (S_k) sorgenti di errori



$$C_{ij,sys} = \sum_{k=1}^{N} \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} \ \sigma_{S_k}^2$$

 S_k : sistematiche $\rightarrow (m_B, x_1, c, m_B c, x_1 m_B, x_1 c)$

 σ_{S_k} : errore sistematico

ANALISI IN BIN DEL PANTHEON SAMPLE

Hubble constant tension within the SNe Ia redshift range?

0.01 < z < 2.26

- > Sottocampioni con lo stesso numero di SNe la: 3, 4, 20, 40 redshift bins
- ightharpoonup Si costruiscono sottomatrici C e sottovettori $\Delta \mu$, considerando l'ordine in redshift delle SNe
- \succ Analisi statistica in ogni intervallo di redshift, minimizzazione χ^2 , metodo MCMC
- > Prior uniformi: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- > Si parte dal valore locale nel 1° bin: $H_0 = 73.5 \, km \, s^{-1} \, Mpc^{-1}$
- Fissato $Ω_{m0} = 0.298$ per il modello ΛCDM
- ightharpoonup Fissati $\Omega_{m0}=0.308$, $w_0=-1.009$, $w_a=-0.129$ per il modello w_0w_a CDM
- \triangleright Si ricavano i valori di H_0 in ciascun intervallo di redshift

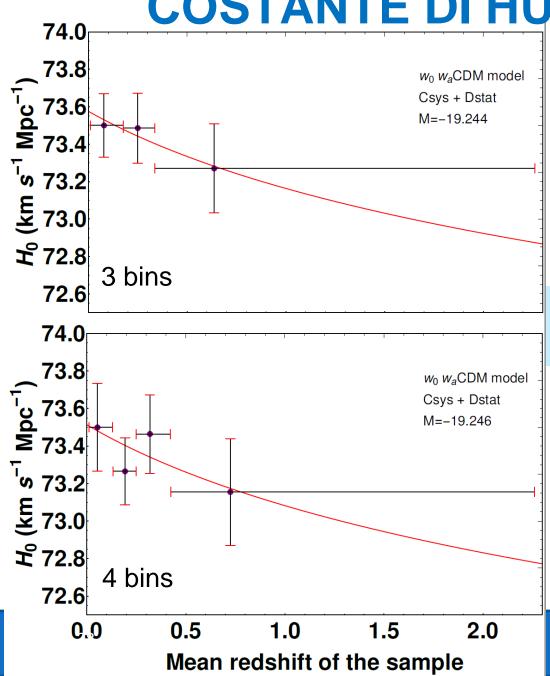
Test: fit non lineare

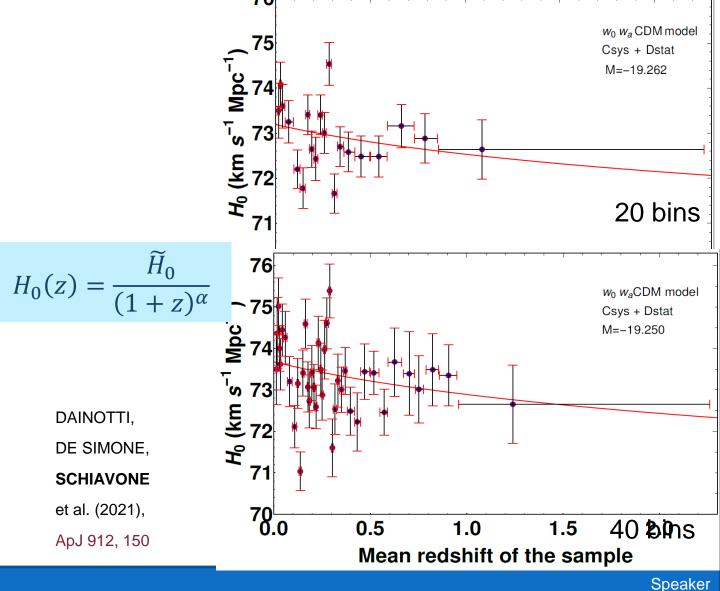
$$H_0(z) = \frac{H_0}{(1+z)^{\alpha}}$$

 α : parametro evolutivo

$$\widetilde{H}_0 = H_0(z=0)$$

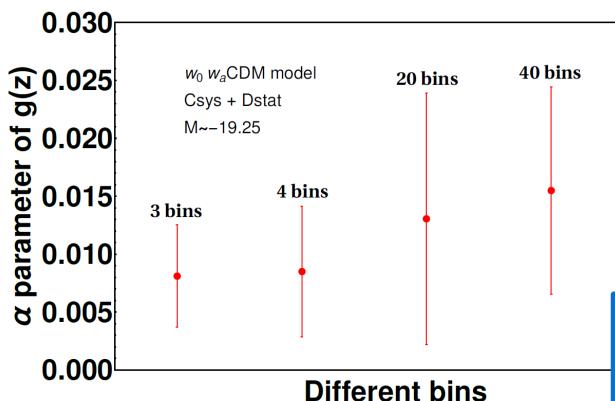
COSTANTE DI HUBBLE NON COSTANTE?





Speaker

COSTANTE DI HUBBLE NON COSTANTE?



Debole ed inaspettata evoluzione di $H_0(z)$

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

 $\alpha = 0 \rightarrow \text{nessuna evoluzione}$

Intervallo di confidenza, 1 σ

RISULTATI DEL FIT – MODELLO $w_0 w_a CDM$

Bins	$ ilde{H}_0$	α	$\frac{\alpha}{\sigma_{\alpha}}$	M
	$(\mathrm{km}\;\mathrm{s}^{-1}\mathrm{Mpc}^{-1})$			
3	73.576 ± 0.105	0.008 ± 0.004	1.9	-19.244 ± 0.005
4	73.513 ± 0.142	0.008 ± 0.006	1.2	-19.246 ± 0.004
20	73.192 ± 0.265	0.013 ± 0.011	1.9	-19.262 ± 0.018
40	73.678 ± 0.223	0.015 ± 0.009	1.7	-19.250 ± 0.022

VALORI ESTRAPOLATI AD ALTI REDSHIFT

Modello $w_0 w_a CDM$

0)
⁻¹)
060
737
)93
48

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Compatibile in 1 σ con le misure della CMB di Planck al redshift della superficie di ultimo scattering z=1100

$$H_0^{[PLANCK]} = (67.4 \pm 0.5) km \, s^{-1} \, Mpc^{-1}$$

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

SNe + BAOs, ANALISI IN BIN

- \square 3 intervalli di redshift (≈ 350 SNe in ciascun bin)
- Due parametri liberi per MCMC $H_0 \in \Omega_{m0}$ per il modello Λ CDM $H_0 \in w_a$ per il modello w_0w_a CDM
- □ M = -19.35 tale che localmente (nel primo bin) si ha:

$$H_0 = 70.0 \ km \ s^{-1} \ Mpc^{-1}$$
 (valore convenzionale per il Pantheon sample)

☐ Si includono nuove probes, BAOs

□ Prior Gaussiane:

$$\mu(H_0) = 70.393 \ km \ s^{-1} \ Mpc^{-1}$$
 $\sigma(H_0) = 2 * 1.079 \ km \ s^{-1} \ Mpc^{-1}$
 $\mu(\Omega_{m0}) = 0.298 \qquad \sigma(\Omega_{m0}) = 2 * 0.022$
 $\sigma(\Omega_{m0}) = 0.845 \ \text{in } 2 \ \sigma \text{l}$

[arXiv:1710.00845 in 2 σ]

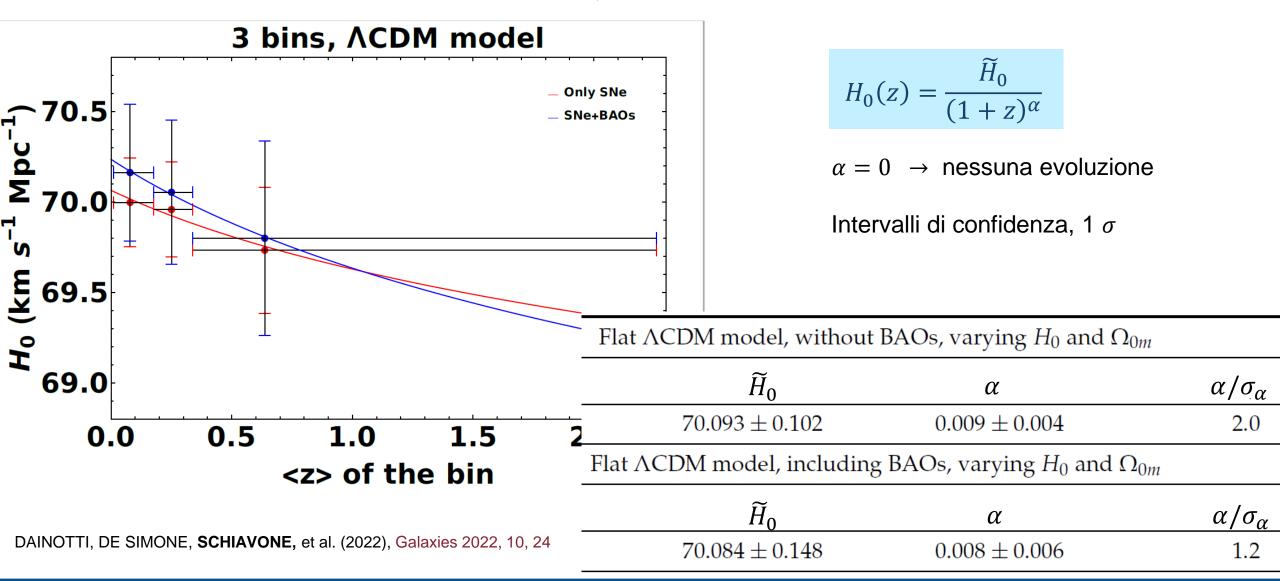
$$\mu(w_a) = -0.129$$

 $\sigma(w_a)$: 20 % deviazione dal valore centrale

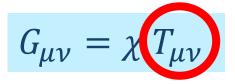
 \Rightarrow Fissato $w_0 = -0.905$ arXiv:1710.00845

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

SNe + BAOs, ANALISI IN BIN

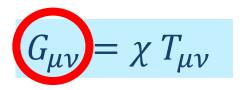


RELATIVITÁ GENERALE



Energia oscura → modifica delle sorgenti

GRAVITÁ MODIFICATA f(R)



Modifica geometrica della teoria gravitazionale

$$\mathcal{L}_{EH} = R$$
 Einstein-Hilbert

Densità di Lagrangiana gravitazionale

 $\mathcal{L}_g = f(R)$ Grado di libertà extra

$$S_{EH} = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} R$$

Azione gravitazionale

$$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} f(R)$$

$$G_{\mu\nu} = \chi T_{\mu\nu}$$

Eq. del campo gravitazionale

$$f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R)$$
$$- \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu}$$

NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451

R: scalare di Ricci

$$f'(R) \equiv \frac{df}{dR}$$

 ∇_{μ} : derivata covariante

TEORIE DI GRAVITÁ MODIFICATA f(R)

Modifica geometrica della teoria gravitazionale

$$\mathcal{L}_g = f(R) = R + F(R)$$

Deviazione dalla teoria di Einstein-Hilbert

Eq. del campo gravitazionale modificate

$$f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R) - \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu}$$

$$G_{\mu\nu} = \chi \left(T_{\mu\nu} + T_{\mu\nu}^{[F]} \right)$$

Modifica esplicita delle equazioni di Einstein-Hilbert

I contributi geometrici non-Einsteiniani possono essere considerati come una sorgente efficace di materia

$$T_{\mu\nu}^{[F]} = -\frac{1}{\chi} \left[F'(R) R_{\mu\nu} - \frac{1}{2} F(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} F'(R) - \nabla_{\mu} \nabla_{\nu} F'(R) \right]$$

MODELLO f(R) DI HU-SAWICKI

Formalismo metrico f(R)

$$n = 1 f(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1} V(\phi) = \frac{m^2}{c_2} \left[c_1 + 1 - \phi - 2\sqrt{c_1 (1 - \phi)} \right]$$

Jordan frame (formalismo equivalente scalartensoriale)

$$V(\phi) = \frac{m^2}{c_2} \left[c_1 + 1 - \phi - 2\sqrt{c_1 (1 - \phi)} \right]$$

$$c_1, c_2$$
 parametri

$$m^2 \equiv \frac{\chi \, \rho_{m0}}{3} = H_0^2 \, \Omega_{m0}$$

 \square Costante cosmologica per $R \gg m^2$

$$f(R) \approx R - 2\Lambda_{eff}$$
 con $\Lambda_{eff} = \frac{c_1}{c_2} m^2$

 \square Si vincolano i parametri, considerando \land CDM come caso limite con f(R) = R + F(R)

$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{0\Lambda}}{\Omega_{0m}}$$
 e $F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4 \frac{\Omega_{0\Lambda}}{\Omega_{0m}} \right) \right]^{-2}$ con $|F_R(z=0)| < 10^{-7}$

Liu, T., Zhang, X., & Zhao, W., Phys. Lett. B, 777, 286 (2018)

DISTANZA DI LUMINOSITÁ IN GRAVITÁ f(R)

$$d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} [(1+z')^3 + y_H(z')]}}$$

(arXiv: 0705.1158)

 $y_H(z)$ racchiude le informazioni per uno specifico modello f(R).

Le equazioni di campo modificate possono essere risolte numericamente in termini di y_H , y_R e le loro derivate

Variabili adimensionali

$$y_H = \frac{H^2}{m^2} - (1+z)^3$$

$$y_R = \frac{R}{m^2} - 3(1+z)^3$$

Condizioni iniziali: z_i

$$y_H(z_i) = \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

$$y_R(z_i) = 12 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

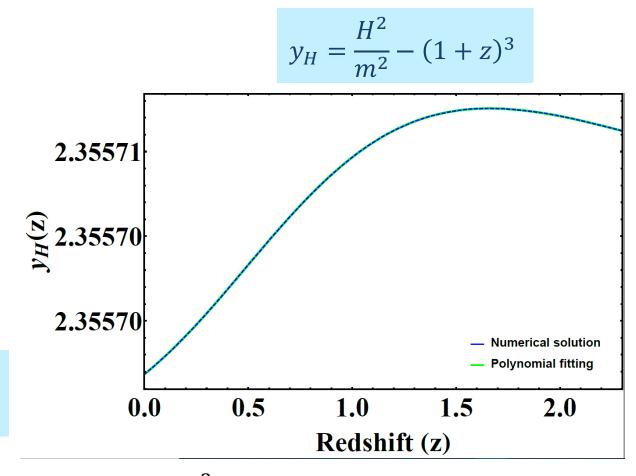
ANALISI IN BIN CON IL MODELLO f(R) DI HU-SAWICKI

$$f(R) \equiv R + F(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1}$$

 $y_H(z)$ racchiude le informazioni per uno specifico modello f(R).

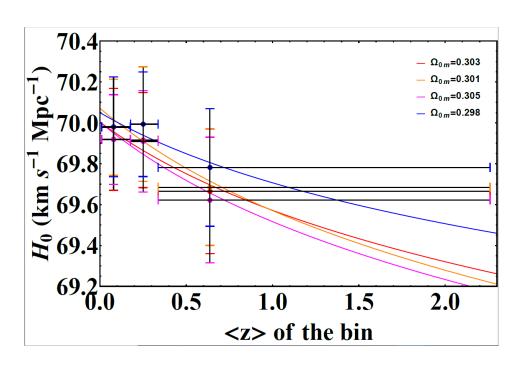
Le equazioni di campo modificate possono essere risolte numericamente in termini di y_H , y_R e le loro derivate

$$d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} [(1+z')^3 + y_H(z')]}}$$



$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}} \quad \text{e} \quad F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}} \right) \right]^{-2} \quad \text{con} \quad |F_R(z=0)| < 10^{-7}$$

ANALISI IN BIN CON IL MODELLO f(R) DI HU-SAWICKI



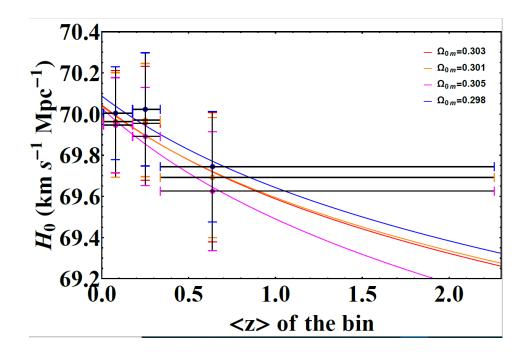


Figure 6. The Hubble constant versus redshift plots for the three bins of SNe Ia only, considering the Hu–Sawicki model. **Upper left panel.** The condition of $F_{R0} = -10^{-7}$ is applied to the case of SNe only, with the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. **Upper right panel.** The same of the upper left, but with the contribution of BAOs. **Lower left panel.** The SNe only case with the $F_{R0} = -10^{-4}$ condition, considering the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. **Lower right panel.** The same as the lower left, but with the contribution of BAOs. The orange color refers to $\Omega_{0m} = 0.301$, the red to $\Omega_{0m} = 0.303$, the magenta to $\Omega_{0m} = 0.305$, and the blue to $\Omega_{0m} = 0.298$.

DAINOTTI, DE SIMONE, **SCHIAVONE**, et al. (2022), Galaxies 2022, 10, 24

Soluzione analitica approssimata:

$$\phi(z) = K(1+z)^{2\alpha}$$

$$H_0^{\text{eff}}(z) = \frac{H_0}{\sqrt{K(1-2\alpha)}(1+z)^{\alpha}}$$

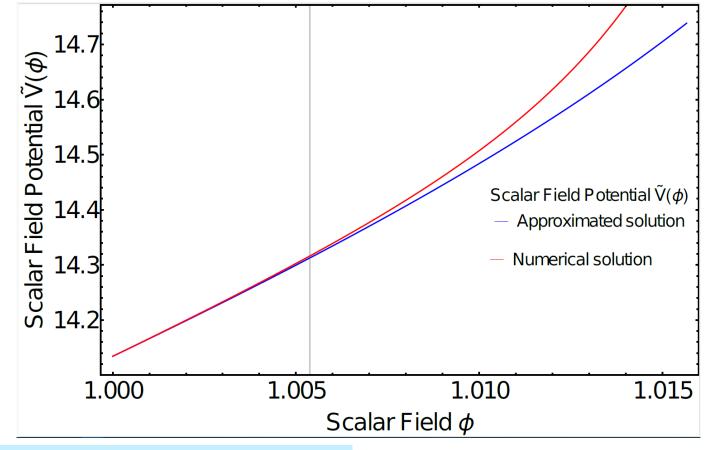
$$\phi(0) = K = 1 - 10^{-7}$$

$$\alpha = 1.1 \times 10^{-2}$$

$$H_0 = 72.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 Per conciliare
$$H_0^{[CMB]} = H_0^{[loc]}$$

$$\Omega_{m0} = 0.298$$

$$\tilde{V}(\phi = K) = \tilde{V}(z = 0) = 6 \frac{1 - \Omega_{m0}}{\Omega_{m0}}$$
 \(\Lambda\text{CDM oggi}\)



$$\tilde{V}(\phi) = \tilde{V}(\phi = K) + \frac{6\alpha}{1 - \alpha} \left\{ \frac{2 + \alpha}{\alpha} \frac{1 - \Omega_{m0}}{\Omega_{m0}} \ln\left(\frac{\phi}{K}\right) + \frac{1 + 2\alpha}{3} \left[\left(\frac{\phi}{K}\right)^{\frac{3}{2\alpha}} - 1 \right] \right\}$$

SCHIAVONE, MONTANI, &
BOMBACIGNO (2023),
MNRAS Letters, 522, L72-L77

Il profilo f(R) a bassi redshift

Per $z \ll 1$:

$$\phi(z) \approx K(1 + 2 \alpha z) + O(z^3)$$

$$\tilde{V}(\phi) \approx \tilde{V}(K) + A_1 (\phi - K) + A_2 (\phi - K)^2 + O[(\phi - K)^3]$$

Relazioni nel Jordan frame

$$R = \frac{dV}{d\phi} \qquad V(\phi) = R(\phi)\phi - f(R(\phi))$$

$$f(R) \approx m^2 B_0 + B_1 R + B_2 \frac{R^2}{m^2}$$

Si può mostrare che si riottiene Λ CDM per $\alpha \to 0$ e $K \to 1$

dove le costanti adimensionali A_i e B_i sono legate algebricamente ai valori di α , Ω_{m0} e K

SCHIAVONE, MONTANI, & BOMBACIGNO (2023),

MNRAS Letters, 522, L72-L77

Soluzione approssimate per $z \ll 1$: f(R) – quadratic gravity