Searching for light Dark Matter with NA64 and POKER at CERN

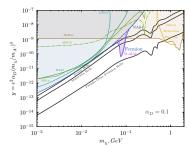
Luca Marsicano

INFN Sezione di Genova

5 Aprile 2024, Firenze - IFAE2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 947715 (ERC Starting Grant POKER, 2020).

Introduction


NA64 main physics case: vector-mediated light dark matter

"Light Dark Matter" hypothesis: DM made of sub-GeV particles χ , part of a new "dark sector". LDM-SM interaction mediated by a new massive U(1) gauge boson, the dark photon.

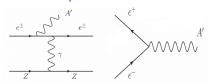
$$\alpha_D \equiv \frac{e_D^2}{4\pi} \qquad \mathbf{DM} \qquad \frac{e_D}{\overline{\chi}} \qquad \frac{e_D}{e^-} \qquad e^+ \\ \mathbf{SM} \qquad \alpha \equiv \frac{e^2}{4\pi}$$

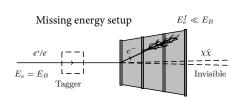
- "Dark Photon" (A') portal, parameters:
 - A' and LDM masses
 - $A' \chi$ coupling: $e_D \simeq 1$
 - $A' \gamma$ kinetic mixing, $\varepsilon \ll 1$
- Annihilation cross section:

$$\langle \sigma v \rangle \propto \frac{\varepsilon^2 \alpha_D m_\chi^2}{m_{A'}^4} = \frac{\varepsilon^2 \alpha_D m_\chi^4}{m_{A'}^4} \frac{1}{m_\chi^2} \equiv \frac{y}{m_\chi^2}$$

For a given m_χ value, y value is fixed by cosmology - $\mathcal{O}(1)$ variations depending on the fine details of the model.

The missing energy technique


Missing energy approach - the active thick target is the detector

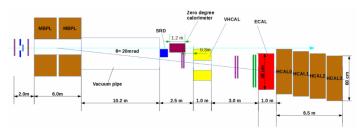

- ② A' are produced from e^+/e^- in the shower and promptly decay to χ particles "invisible decay"

Missing Energy Signature

- Specific beam structure: particles impinging "one at a time" on the active target
- Deposited energy E_{dep} measured event-by-event
- Signal: events with large $E_{miss} = E_B E_{dep}$
- Backgrounds: events with ν / long-lived (K_L) / highly penetrating (μ) particles escaping the detector

Main A' production mechanisms:

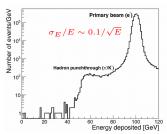
Target/ECAL/HCAL

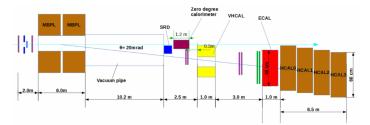

NA64 Experiment

Missing energy experiment at CERN SPS, H4 line - 100 GeV e^- beam H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim 0.5\%$

Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)

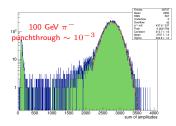


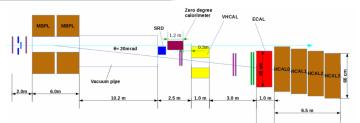

NA64 Experiment

Missing energy experiment at CERN SPS, H4 line - 100 GeV e^- beam H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim0.5\%$

Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)
- EM-Calorimeter: $40X_0$, Pb/Sc Shashlik
- Plastic scintillator VETO
 - Hadron calcrimator VETO




NA64 Experiment

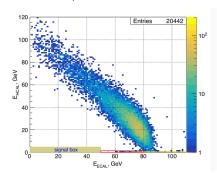
Missing energy experiment at CERN SPS, H4 line - 100 GeV e^- beam H4 line: few $10^7~e^-/{\rm spill}$ with energy resolution <1% and hadron contamination $\sim0.5\%$

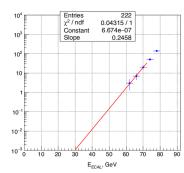
Experiment Setup

- Beam identification system: magnetic spectrometer and SRD tagging (MBPL magnets)
- EM-Calorimeter: $40X_0$, Pb/Sc Shashlik
- Plastic scintillator VETO
- Hadron calorimeter: 4 m, 30 λ_I

Backup

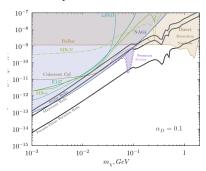
Data analysis of 2021-2022 runs

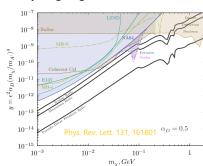

Accumulated statistics: 2.8×10^{11} (2016-2018) $+ 6.5 \times 10^{11}$ (2022) $+ 5.2 \times 10^{11}$ (2023) $\rightarrow \sim 1.5 \times 10^{12}~e^-$ on target (EOT) . Target before LS3: $\sim 3 \times 10^{12}~\text{EOT}$

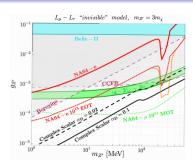

Selection cuts:

- Clean impinging 100 GeV e^- , no activity in VETO/HCAL,
- shower-shape compatible with e- induced one (data-driven shower shape χ^2 distribution)

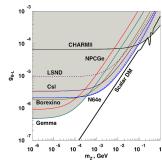
Signal window: $E_{ECAL} <$ 47-50 GeV, $E_{HCAL} <$ 1 GeV, depending on the run conditions and detector performances

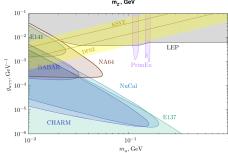

Expected background yield: ~ 0.5 events (contribution of upstream electro-nuclear reactions extrapolated from data via sideband fit)




NA64 results

- Current published results are based on $\sim 10^{12}$ EOT (2016-2022) runs. No signal observed after data unblinding.
- For $\alpha_{\rm D}=0.1$, NA64 excludes the Scalar and Majorana scenarios in a large m_{χ} interval.
- Thanks to e^+e^- resonant enhancement, the Pseudo-Dirac Fermion scenario is touched in a narrow m_χ region.
- Analysis of the 2023 data is currently ongoing...



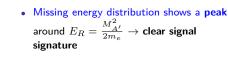

Exploring alternative BSM models, a quick (non-comprehensive) glance

• Data collected by NA64 has been re-analyzed to explore several SM extensions: $L_{\mu} - L_{\tau}^{a}$, $B - L^{b}$, ALPs^c...

^aPhys. Rev. D 106, 032015 ^bPhys. Rev. Lett. 129, 161801 ^cPhys. Rev. Lett. 125, 081801

Backup

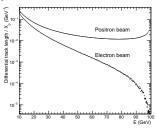
POKER: POsitron resonant annihilation into darK mattER

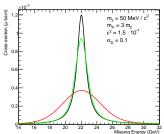

An optimized light dark matter search with positrons in the NA64 framework

Exploiting the LDM production process:

$$e^+e^- \to A' \to \chi \overline{\chi}^1$$

Large event yield:

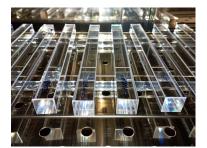

$$N_s^{annihil} \propto Z lpha_{EM}$$
 vs $N_s^{brem} \propto Z^2 lpha_{EM}^3$

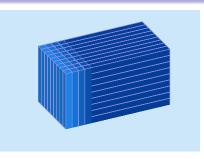


Project goal

Introduction

 Perform a dedicated missing energy measurement in NA64 with the SPS positron beam, replacing the existing NA64 ECAL with a new high resolution detector ($PbWO_4$ calorimeter)

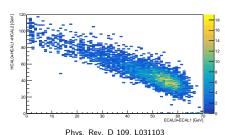


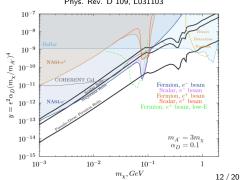


Phys. Rev. Lett. 121, 041802

The PKR-Cal Detector

- Electromagnetic calorimeter: 9×9 matrix of $2 \times 2 \times 20 \text{ cm}^3 \text{ PbWO}_4$ crystals + 4-layers pre-shower (total ~ 120 crystals)
- SiPM-based readout: $4 \times 6 \times 6 \text{ mm}^2$ Hamamatsu S14160-6010 SiPM per crystal (10 μm cell size)
- Expected resolution from MC simulations: $\sigma_E/E \sim 2.5\%/\sqrt{E} \oplus (0.5 \div 1)\%$

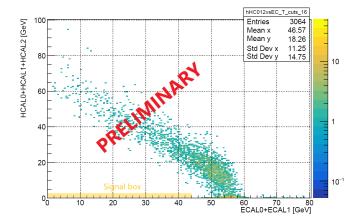

PKR-Cal R&D status:


- Crystals characterization (light yield, light transmission, radiation hardness) performed
- small-size (3X3 crystals) prototype built and tested at H8 line @CERN, to validate technical choices, further test foreseen in summer 2023
- PKR-Cal mechanical structure design ready
- detector assembly ongoing...

First e^+ measurement at NA64

While the POKER active target is being built, a first measurement with a 100 GeV e^{\pm} beam, using the current NA64 setup has been performed in 2022

- Goals: background studies, first upper limit optimized for resonant A^\prime production
- $\bullet~\sim 10^{10}~e^{+}{
 m OT}$ collected
- Blind-analysis approach: signal region $E_{ECAL} < 50$ GeV, $E_{HCAL} < 1$ GeV
- Main expected background source: decay of misidentified K and π contaminants in the beam
- No events in the signal region after data unblinding



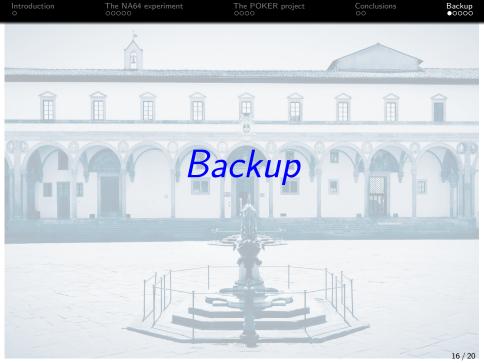
70-GeV positron run - preliminary analysis results

First measurement with a 70-GeV e^+ beam performed in 2023

- $\sim 1.6 \times 10^{10}~e^+$ OT collected
- Critical aspects to address: detector hermeticity and SRD tagging efficiency at lower beam energy
- Analysis ongoing: first results are encouraging...

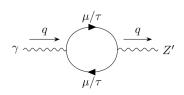
Conclusions

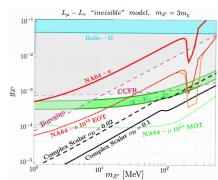
Conclusions


NA64 is an electron-beam missing-energy experiment at CERN searching for LDM particles in the dark photon paradigm

- The analysis of data collected up to 2022 allowed the collaboration to set stringent limits in the "invisible decay" dark photon parameter space ($A' o \chi \bar{\chi}$)
- In addition to the A' "invisible decay" scenario, NA64 set limits on ALPs, Z', visible A' decay and B-L scenarios.
- The analysis of the 2023 data-sample is currently ongoing.

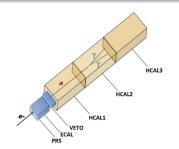
POKER is an ERC funded project, aiming to perform an optimized missing energy measurement with a positron beam

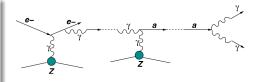

- \bullet The project includes the realization of a high-resolution active target (PbWO₄ calorimeter) to be implemented in the NA64 setup.
- First test run with a positron beam performed in 2022, with the original NA64 setup. Results published on PRD.
- Second e^+ run collected in 2023 with a 70-GeV beam. Analysis is ongoing, data unblinded soon
- POKER detector is being built possibility to run the pilot measurement within 2025 currently discussed within the collaboration

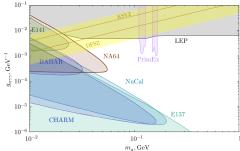


Search for Z' with NA64

- Dark Sector SM interaction mediated by a light Z' boson with dominant coupling to μ and τ
- Data collected in 2016-2018 re-analyzed for the Z' search $(\sim 3 \times 10^{11} \text{ EOT})$
- Loop-induced mixing between the SM photon and Z' - effective coupling implemented in signal simulation (MadGraph5)
- Resulting limits touch the preferred q-2 region for $m_{Z'}$ 1 MeV. Collecting 10^{13} EOT would allow to explore a significant part of the q-2band.

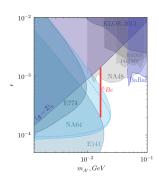



The NA64 Collaboration, Phys. Rev. D 106, 032015


Search for ALPs and scalars

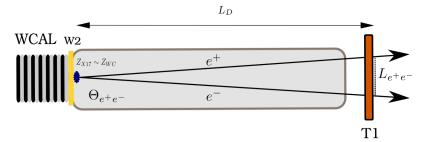
- ALPs produced via Primakoff effect from hard bremsstrahlung photons in the ECAL
- HCAL fist module used as a veto
- signal defined as: 1) $E_{ECAL} < 85$ GeV, $E_{\rm HCAL23} > 15$ GeV or 2) $E_{\rm ECAL} < 50$ GeV, $E_{HCAL23} \simeq 0 \text{ GeV}$
- NO events observed in 2016-2018 data (compatible with expected background B $\simeq 0.17$)

The NA64 collaboration Phys. Rev. Lett. 125, 081801 (2020)



NA64 - visible mode

- Interest has recently grown towards A' visible decay $A' \to e^+ e^-$ in the ~ 17 MeV mass region (X17 anomaly)
- NA64 visible mode: A' produced in WCAL detector (plastic and tungsten calorimeter). Search for decay products in ECAL
- 8.4×10^{10} EOT collected in visible mode: ruled out part of the available X17 parameter space
- WCAL detector upgrade necessary to improve reach


NA64 collaboration, Phys. Rev. D 101 (2020) no.11, 071101(R)

NA64 visible - future upgrade

The sensitivity to the X17 in the NA64 visible mode is limited by the WCAL length $(\gamma c \tau_{X17} \sim 30 \text{ mm})$ and the capability to separate the very close tracks of the $X17 \rightarrow e^+e^- \text{ decay}$

- \rightarrow new setup under consideration
 - New WCAL geometry for improved signal efficiency
 - Dipole magnet $+ \sim 18$ m vacuum pipe for tracks separation
 - GEM trackers + ECAL for invariant mass measurement (10% invariant mass resolution)
 - ullet Possible to probe significant part of the X17 parameter space in a ~ 20 days run

