Incontri di Fisica delle Alte Energie 2024

Stato e prospettive della fisica a bersaglio fisso nel Run 3 di LHCb

Fabio Davolio per la Collaborazione LHCb

università degli studi FIRENZE

Esperimento LHCb

$\theta \in [15, 250] \text{ mrad}$

LHCb è uno dei quattro grandi esperimenti presenti al Large Hadron Collider (LHC) del CERN.

Obiettivi principali nella fisica degli adroni pesanti:

- Violazione di CP
- Decadimenti rari

Caratteristiche:

1) Spettrometro a singolo braccio con una geometria proiettata in avanti

2) Diversi sotto-rivelatori per il tracciamento e l'identificazione delle particelle 3) Geometria adatta anche a collisioni in configurazione a bersaglio fisso

LHCb a bersaglio fisso

SMOG: System for Measuring Overlap with Gas

- gas nobili (He, Ne, Ar) a bassa pressione (~ $10^{-7} mbar$)
- iniezione in regione ±20 m attorno punto d'interazione pp

Concepito per misura profilo trasverso
 dei fasci da collisioni p-gas → minore incertezza sulla misura di luminosità di LHC

Ampia scelta del sistema di collisione

Energia di collisione O(100 GeV)

regione cinematica (alto Bjorken-x)

inesplorate da altri esperimenti

Estensione del programma di fisica

Effetti nucleari nella produzione adronica PRL 122 132002 (2019) EPJC 83, 541 (2023)

EPJC 83, 625 (2023) EPJC 83, 658 (2023)

Produzione \bar{p} per fisica raggi cosmici PRL 121 222001 (2018) EPJC 83, 543 (2023)

Esperimento LHCb – Upgrade I

Tra il 2018 e il 2022:

- \sim 95% dei rivelatori aggiornati
- sostituzione elettronica di acquisizione
- passaggio a trigger solo software
- installazione SMOG2

LHCb a bersaglio fisso

SMOG

- Nessuna misura precisa della pressione del gas iniettato
- Ampia regione di iniezione: sovrapposizione regioni di interazione *pp* e *p*-gas

SMOG

• Solo gas nobili: He, Ne, Ar

Upgrade SMOG2

- Iniezione in cella di 20 cm posizionata 40 cm a monte delle interazioni *pp*
- Maggiore pressione del gas (fino a x100) a parità di flusso
- Acquisizione contemporanea *pp* e *p*-gas
- Misura precisa della luminosità *p*-gas
- Grande varietà di gas:
 H₂, D₂, N₂, O₂, He, Ne, Ar, Kr, Xe

VErtex LOcator sensors

Densità gas bersaglio: profilo triangolare

Prospettive di fisica con SMOG2

La presa dati simultanea pp e p-gas, la maggiore varietà di gas e l'aumento di pressione aprono nuove prospettive

- Misure di precisione di **particelle charm e bottom** e di **Drell-Yan** nella regione a bassa massa
- Studio dettagliato delle **PDFs nella regione ad alto** *x*
- Alta statistica di ρ , ω , charmonium e bottomonium prodotti in **collisioni ultra-periferiche con bersagli ad alto Z**
- Tomografia 3D della struttura dei nucleoni
- Programma di interesse per la fisica dei raggi cosmici:
 - produzione di antimateria nella galassia con H_2 , D_2 e He
 - studio degli sciami atmosferici con $N_2 \mathrel{e} O_2$

	SMOG	SMOG2
	published result	example
	$p \mathrm{He} @87~\mathrm{GeV}$	pAr@115 GeV
Integrated luminosity	$7.6 \ {\rm nb}^{-1}$	$\sim 45 \ \mathrm{pb}^{-1}$
syst. error on J/ψ x-sec.	7%	2 - $3~%$
J/ψ yield	400	$15\mathrm{M}$
D^0 yield	2000	150M
Λ_c^+ yield	20	1.5M
$\psi(2S)$ yield	negl .	150k
$\Upsilon(1S)$ yield	negl.	7k
Low-mass Drell-Yan yield	negl.	9k

LHCb-PUB-2018-015

Laboratorio per studi di QCD senza eguali!

Installazione e allineamento SMOG2

Installazione completata ad **Agosto 2020**

Posizionamento e allineamento della cella ottenuti durante l'installazione sono stati verificati nei dati Ottobre 2022: tomografia della cella di SMOG2 ottenuta dai vertici delle interazioni tra fascio e materiale

Primi successi con SMOG2 – Novembre 2022 (1)

Iniezione stabile di gas all'interno della cella

Due regioni d'interazione (*pp* e *p*-gas) distinte e simultanee

Prima iniezione di gas non nobile: Idrogeno

Picco J/ψ in soli ~ 18 min di acquisizione *p*-Ar

Primi successi con SMOG2 – Novembre 2022 (2)

<u>Studio di produzione</u> di K_S in collisioni *p*-Ar con SMOG2 (\sim 7 min di acquisizione)

Distribuzione vertici secondari nel piano trasverso al fascio

Stima pressione del bersaglio al centro della cella $p \sim 1.5 \cdot 10^{-6} \text{ mbar}$ e luminosità integrata $\mathcal{L} \sim 0.5 \text{ nb}^{-1}$

sono in linea con le attese

2.0

1.5

1.0

0.5

0.0

Incidente VELO – Gennaio 2023

Perdita di controllo dei sistemi di protezione ∆ pressione ~ 200 mbar ↓ Deformazione plastica foil che ricopre rivelatore

> Non è stato possibile acquisire dati con SMOG2 nel 2023

Sostituzione RF Foil – YETS 2023/24

Rimozione del VELO e sostituzione del Foil danneggiato **13-29 Nov 2023**

Reinstallazione del VELO e di SMOG2 e cablaggio 29 Gen - 6 Mar 2024

PRONTI PER IL 2024!

Conclusioni

- Dal 2015 LHCb, grazie a SMOG, è l'unico esperimento ad LHC con fisica a bersaglio fisso
- L'aggiornamento a SMOG2 permette di variare maggiormente i bersagli e raggiungere una densità fino a 100 volte maggiore a parità di flusso di gas con Run 2
- Sistema di iniezione testato e validato nel 2022 con He, Ne, Ar e H₂
- Possibilità di acquisire simultaneamente collisioni tra fasci e a bersaglio fisso
- Risolto il danno del RF Foil che ha limitato l'attività di SMOG2 nel 2023

Grazie per l'attenzione!

Backup

Run 1 / Run 2 \rightarrow L0 (Hardware) + High Level Trigger (Software)

Limitazione: output L0 limitato a 1 MHz,

trigger hardware non ottimizzabile per canali adronici

eventi fisici interessanti costante all'aumentare della luminosità

Run 3 \rightarrow High Level Trigger 1 e 2 (Software)

Vantaggio: lettura completa del rivelatore a 30 MHz algoritmi di selezione specifici, ricostruzione completa online

HLT1 (GPU)

HLT2 (CPU)

- *Ricostruzione di particelle cariche*
- Selezione grezza

- *Ricostruzione completa dopo allineamento e calibrazione*
- Selezione raffinata

Rivelazione di nuclei leggeri ad LHCb (1)

Efficienza di ricostruzione delle tracce con algoritmo standard e algoritmo TOF. Osservare il netto miglioramento nella ricostruzione dei deutoni

Rivelazione di nuclei leggeri ad LHCb (2)

β ricostruito in funzione dell'impulso

β ricostruito in 4 intervalli di impulso

$$\mathcal{L} = N_p f_{\text{riv}} \theta$$
$$\theta = \frac{L}{4} \cdot \frac{\Phi}{3.81 \sqrt{\frac{T}{M} \frac{D^3}{0.5 L + 1.33 D}}}$$

 N_p : n° protoni per pacchetto f_{riv} : freq. di rivoluzione θ : densità areale

L: lunghezza della cella
 D: diametro della cella
 M: massa molecolare del gas

Misura indiretta di luminosità

Fabio Davolio

Contributo di SMOG alla fisica dei raggi cosmici

Collisioni tra raggi cosmici primari e mezzo interstellare Produzione di antimateria nei raggi cosmici Sorgenti esotiche: materia oscura? Misura di $\sigma(p\text{He} \rightarrow \bar{p} \text{ X})$ Principale incertezza: sezioni d'urto ${
m s}^{-1}~{
m sr}^{-1}$ $] \times R^3$ 10^{-3} 10 PAMELA 2012 AMS-02 2015 fotal uncertaintie 10^{0} 10^{-4} $\Phi_{ar{p}}/\Phi_p$ Residuals [%] 7 $\Phi_{\bar{p}}^{\text{TOA}} [\text{GV}^{-1}]_{\text{m}^{-1}}$ 10^{-1} 10^{-5} Fiducial Uncertainty from: Cross-sections -20Propagation Transport Primary slopes XS Total Solar modulation 10 R [GV]100 10^{3} 10^{-6} 50 100 5 10 10^{3} 10010Kinetic energy T [GeV] R = pc/Ze [GV]

Incertezza sulle sezioni d'urto ancora dominante

Contributi residui all'incertezza

1. Composizione raggi cosmici e mezzo interstellare \rightarrow prevalentemente H e He

2. Misura di produzione $\sigma(pp \rightarrow \overline{n} X)$ 0.6 NA49 pC \square confrontando $\sigma(pp \rightarrow \bar{p} X) \in \sigma(pn \rightarrow \bar{p} X)$ Na49 np $= f_{\bar{u}}^{0/4}/f_{\bar{b}}^{0.4}$ Fermilab vincolo sulla violazione di isospin LHCb con deuterio STAR ΔIS ALICE misurabile con SMOG2 0.0 iniettando D₂ 10^{1} 10^{3} 10^{2} 10^{4} \sqrt{s} [GeV]

