

Decadimenti rari a CMS e prospettive per Run 3 Incontri di Fisica delle Alte Energie – 05/04/2024

Per la collaborazione CMS

Marco Buonsante (Università & INFN Bari)

Panoramica

Decadimenti rari:

- Soppressi nel Modello Standard (MS)
- Previsioni teoriche precise
- Sensibili a nuova fisica
 - modifica delle frazioni di decadimento (BR)
- Accessibili sperimentalmente a CMS
 - BR $\mathcal{O}(10^{-9} 10^{-8})$

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)

HADRON CALORIMETER (HCA

Panoramica

Decadimenti rari:

- In questa presentazione:
 - Decadimenti multi-muonici di mesoni neutri
 - Decadimenti proibiti da simmetrie (accidentali) del MS (LUV, LNV e LFV)
- Necessitiamo di tanta statistica:
 - Limitata dalla rate del trigger
- In queste analisi, tre approcci diversi al problema:
 - Scouting, B-Parking e Standard

Events/GeV × Prescal

 $\eta \rightarrow 4\mu \, [arXiv:2305.04904]$ $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^- [arXiv:2403.11352]$

Entrambi osservati a CMS!

τ → 3μ [arXiv:2312.02371]

Motivazioni:

- Predetto dal Modello Standard (SM) con frazione di decadimento (BR) molto piccola: $\mathcal{B}(\eta \rightarrow 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$ [Chinese Phys. C 42 (2018) 023109]
- Banco di prova di nuova fisica [Rep. Prog. Phys. 86 016201]
 - Sensibile alla presenza di nuove particelle (hidden photons, Higgs scalari leggeri e assioni)
 - Test di violazione della simmetria discreta

Dati:

- Collisioni pp a 13 TeV 2017-2018 (~101 /fb)
- Eventi con almeno 2 µ nello stato finale

Strategia di trigger: "Muon Scouting stream"

- Obbiettivo: Acquisire più eventi mantenendo la stessa bandwidth rispetto allo standard stream
 - Salvare solo una quantità limitata di info per evento (~8 kB/event)
 - Trigger di due muoni ad alta rate (~2 kHz)

4μ

CMS Preliminary

Events / 0.1 GeV 10₄

10⁵

10⁴

 10^{3}

 10^{2}

96.6 fb⁻¹ (13 TeV)

- Selezioni offline basate su carica totale e vertice comune

Risultati:

- massa inv. dei 4 muoni
 - Significanza statistica > 5σ

$$\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1)$$

$$\mathcal{B}(\eta \rightarrow 4\mu) = (5.0 \pm$$

Si osserva un picco nello spettro della

 $1(stat) \pm 0.1(syst)) \times 10^{-3}$

 $0.8(\text{stat}) \pm 0.7(\text{syst}) \pm 0.7(\mathcal{B}_{2\mu})) \times 10^{-9}$

Compatibile con il valore aspettato dal MS:

 $\mathcal{B}(\eta \to 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$

Motivazioni:

- Predetto dal Modello Standard (SM) con frazione di decadimento (BR); $\mathcal{B}(J/Psi \rightarrow 4\mu) = (9.74 \pm 0.05) \times 10^{-7} [PhysRevD.104.094023]$
- Sensibile alla presenza di nuova fisica [s10052-020-08816-9]

Strategia d'analisi:

- Collisioni pp a 13 TeV (33.6 /fb) (2018 B Parking: Alta rate (5kHz), delayed processing)
- Selezioni offline basate su vertice comune, prob. del vertice e sulla cinematica della J/Rsi
- La BR di J/Psi $\rightarrow 4\mu$ è determinata in termini di quella di J/Psi $\rightarrow 2\mu$

 $\frac{\mathcal{B}_{J/Psi \to 4\mu}}{\mathcal{B}_{J/Psi \to 2\mu}} = \frac{N_{J/Psi \to 4\mu}}{N_{J/Psi \to 2\mu}} / \frac{\varepsilon_{J/Psi \to 4\mu}}{\varepsilon_{J/Psi \to 2\mu}}$

Ciascuna efficienza è ottenuta dal MC come rapporto fra eventi ricostruiti e generati

8

$J/Psi \rightarrow 4\mu$

Risultati:

- Si osserva un picco nello spettro della massa inv. dei 4 muoni
 - Significanza statistica > 7σ

$$\frac{\mathcal{B}_{J/\psi\to4\mu}}{\mathcal{B}_{J/\psi\to2\mu}} = (16.5)$$

$$\mathcal{B}(J/\psi \rightarrow 4\mu) =$$

Compatibile con il valore atteso dal MS:

Marco Buonsante – IFAE – 05/04/2024

$J/Psi \rightarrow 4\mu$

- $.9^{+5.5}_{-4.6}(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-6}$
- $= (10.1^{+3.3}_{-2.7}(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-7}$

 $\mathcal{B}(I/\psi \to 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$

Motivazioni:

- Il MS consente la violazione del sapore dei leptoni carichi (LFV) attraverso l'oscillazione dei neutrini, ma con BR piccole: $\mathcal{B}(\tau \to 3\mu) \sim \mathcal{O}(10^{-54})$ [Eur. Phys. J. C (2019) 79:84 Eur. Phys. J. C (2020) 80: 438]
- I decadimenti LFV sono un banco di prova per le testare nuova fisica [JHEP10(2018)148]
 - BR predette: $\mathcal{B}(\tau \to 3\mu) \sim \mathcal{O}(10^{-8})$

$\tau \rightarrow 3\mu$

Strategia d'analisi:

- Collisioni pp a 13 TeV (97.7 /fb) con un **trigger dedicato** per ciascun canale dell'analisi:
 - Heavy flavour (HF): tau da decadimenti di mesoni B e D
 - W: tau da decadimento del bosone W
- **Candidati di segnale**: 3 muoni a carica <u>+</u>1 selezionati dal trigger + selezioni offline (vertice comune, qualità di ricostruzione, massa invariante)
- **Soppressione del fondo**:
 - Veti sulle risonanze $\phi \rightarrow \mu \mu = \omega \rightarrow \mu \mu$
 - MVA per sopprimere i fake sviluppata appositamente per il canale HF
 - MVA per la soppressione del background combinatorio
- **Categorizzazione degli eventi** basata sulla risoluzione della massa invariante
 - 3 categorie per anno e per canale

$\tau \rightarrow 3\mu$

1.78 GeV

Risultati:

- categoria
 - HF: (gaussiana + crystalball) + esponenziale
 - W: gaussiana + polinomio
- Limite superiore osservato (atteso) al L.C. del 90%:
- Includendo il risultato 2016 [JHEP01(2021)163]

Marco Buonsante – IFAE – 05/04/2024

$\tau \rightarrow 3\mu$

- Segnale estratto da fit di massima verosimiglianza
- della massa invariante dei 3 muoni per ciascuna

- $\mathcal{B}(\tau \to 3\mu) < 3.1(2.7) \cdot 10^{-8}$ con i dati 2017/2018
- $\mathcal{B}(\tau \to 3\mu) < 2.9(2.4) \cdot 10^{-8}$ al L.C. del 90%

Il miglior risultato ottenuto ad un collisore adronico!

Prospettive per Run 3

Presa dati Run 3:

- Condizioni di acquisizione dati più impegnative:
 - Maggiore PU ($35 \rightarrow 50$ interazioni per crossing) e stessa bandwidth.

1	3.0 _ا
2023: <µ> = 52	
2022: <µ> = 46	0.5
2018: <µ> = 37	2.5
2017: <µ> = 38	
2016: <µ> = 27	2.0
2015: <µ> = 14	
-	1.5
(13.6 TeV) = 80.0 mb n (13 TeV) = 80.0 mb	1.0
	0.5
00 ₁ 08	0.0
r crossina	

Prospettive per Run 3

Strategia di trigger Run 3:

- Trigger inclusivo di due muoni:

LFV $\tau \rightarrow \mu \mu \mu$, ricerche esotiche e ricerca di $\eta \rightarrow \mu^+ \mu^- e^+ e^-$

- Di-electron trigger [PoS ICHEP2022 (2022) 681]
- Scouting migliorato: [arXiv:2403.16134*]
 - Per le risonanze sotto 11 GeV, performance di ricostruzione dei muoni scouting vs offline compatibili a 1-1.5%
 - Aumento della rate

Adatto per diversi studi $b \rightarrow sll$, charmonio e spettroscopia del B,

Adatto a ricerca di violazione dell'universalità del sapore leptonico

Prospettive per Run 3

Esempio: analisi $\tau \rightarrow 3\mu$

Miglioramento anche del trigger dedicato a questa analisi con una minore soglia in p_T

- +60% di efficienza di trigger rispetto a Run 2
- Incremento yield/fb⁻¹ delle D_s misurato nei dati: 3200 \rightarrow 7200

Decadimenti rari:

- Tutte analisi con muoni nello stato finale:
 - Possibili grazie a 3 diverse strategie di trigger (Scouting, B-Parking e Standard)

Prima osservazione dei	Prima osservazione del	Ricerca
decadimenti $\eta \rightarrow 4\mu$	decadimento J/Psi $\rightarrow 4\mu$	Ness
 BR 25% più alto dello SM 	 BR compatibile con il le 	 Migli
ma comunque compatibile	predizioni dello SM	ad u
entro le incertezze		

Prospettive Run 3:

- Condizioni di acquisizione dati più impegnative
- Miglioramenti nel sistema di trigger

Conclusioni

- a di $\tau \rightarrow 3\mu$
- suna evidenza
- or risultato ottenuto
- n collisore adronico

Grazie per l'attenzione!

Marco Buonsante — IFAE — 05/04/2024

Backup

////////

Marco Buonsante — IFAE — 05/04/2024

Studi del fondo:

Controllo eseguito per verificare la presenza di fondi che piccano intorno alla massa di η

- $\eta \rightarrow \mu^+ \mu^- \gamma \operatorname{con} \gamma$ che converte nel materiale: non picca ed è shiftato ad alta m(4µ)
- $\eta \rightarrow \mu^+ \mu^- \pi^+ \pi^- \operatorname{con} \pi$ mis-identificati come μ : picca ma è shiftato a massa più bassa per via dell'errata ipotesi sulla massa dei π

Conclusione: nessuna possibile componente del fondo che picchi intorno alla massa di η

Stato dell'arte:

- Non è stata trovata alcuna prova di questo decadimento.
- Limiti superiori sul $\mathcal{B}(\tau \rightarrow 3\mu)$ misurati da esperimenti $e^+ e^-$ e collisori adronici

CMS 2016 (~ 33 [JHEP01(2021)163]
LHCb Run 1
[JHEP02(2015)121]
BaBar
PhysRevD.81.111101
Belle [PhysicsLettersB687]

LHC è una fabbrica di τ		Process 1
D	ue sorgenti principali di leptoni τ a LHC:	$pp \rightarrow c\bar{c} + \dots$
•	Heavy Flavour (HF) channel (~ 99.9 %)	
	• Basso p_T e alto $ \eta $	$pp \rightarrow b\bar{b} + \dots$
	 Sensibile alla presenza di K e π mis-identificati 	
	come muoni	$pp \rightarrow W + \dots$
•	W channel (~ 0.01 %)	$pp \rightarrow Z + \dots$
	• Alto p_T e basso $ \eta $	i riferisce al nume

$\tau \to 3 \mu$

	Process 2	No. of τ^*	
•	$D \to \tau \nu_{\tau}$	$11.8\cdot 10^{12}$	Æ
	$(95\% \ D_s, \ 5\% \ D^{\pm})$	5	
	$B \to \tau \nu_{\tau} + \dots$	$5.45\cdot10^{12}$,	
	$(44\% \ B^{\pm}, 45\% \ B^0, 11\% \ B^0_s)$	×	\setminus
•	$B \to D(\tau \nu_{\tau}) + \dots$	$1.86\cdot 10^{12}$	
	$(98\% \; D_s, 2\% \; D^{\pm})$		
••	$W \to \tau \nu_{\tau}$	$1.99\cdot 10^9$	
	$Z \to \tau \tau$	$3.86\cdot 10^8$	

nero di τ previsto per una luminosità integrata di 97.7 fb^{-1}

Categorizazione degli eventi

Dati e MC sono divisi in tre categorie basate sulla risoluzione della massa invariante:

$$\sigma_m/m = \frac{\sqrt{\sum_{i=1}^3 (m(\delta\tau_i) - m(\tau))^2}}{m(\tau)}$$

dove $\delta \tau_i = (p_{Ti} + \delta p_{Ti}, \eta_i, \phi_i, m_i) + \sum_{j=1, j \neq i}^3 (p_{Tj}, \eta_j, \phi_j, m_j)$

- A $\frac{\sigma_m}{m} < 0.7\%$
- B: $0.7\% \frac{<\sigma_m}{m} < 1.1\%$
- C: $\sigma_m/m > 1.1\%$

Queste regioni sono correlate alla pseudorapidità dei muoni nello stato finale e riflettono la geometria del tracker interno che domina la risoluzione sui p_T per muoni a basso p_T

Tag-side: b→µX

Signal-side: unbiased b hadron decays

B-Parking dataset :

- Raccolti da trigger di singolo muone
- Rate che aumenta a gradini man mano che la rate del Physics Stream decresce
- Il dataset B-parking contiene ~10 miliardi di decadimenti unbiased di adroni contenenti quark b
- Luminosità integrata pari a 41.5 ±1.0 fb-1

