

Incontri di Fisica delle Alte Energie – 05/04/2024

Marco Buonsante (Università & INFN Bari)

Per la collaborazione CMS

Panoramica

Decadimenti rari:

- Soppressi nel Modello Standard (MS)
- Previsioni teoriche precise
- Sensibili a nuova fisica
 - modifica delle frazioni di decadimento (BR)
- Accessibili sperimentalmente a CMS
 - BR $\mathcal{O}(10^{-9} 10^{-8})$

Panoramica

Decadimenti rari:

- In questa presentazione:
 - Decadimenti multi-muonici di mesoni neutri
 - Decadimenti proibiti da simmetrie (accidentali) del MS
 (LUV, LNV e LFV)
- Necessitiamo di tanta statistica:
 - Limitata dalla rate del trigger
- In queste analisi, tre approcci diversi al problema:
 - Scouting, B-Parking e Standard

 $\eta \to 4\mu \, [arXiv:2305.04904]$ $J/\psi \to \mu^{+}\mu^{-}\mu^{+}\mu^{-} \, [arXiv:2403.11352]$

Entrambi osservati a CMS!

 $\tau \to 3\mu \, [arXiv:2312.02371]$

$\eta \to 4 \mu$

Motivazioni:

- Predetto dal Modello Standard (SM) con frazione di decadimento (BR) molto piccola: $\mathcal{B}(\eta \to 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$ [Chinese Phys. C 42 (2018) 023109]
- Banco di prova di nuova fisica [Rep. Prog. Phys. 86 016201]
 - Sensibile alla presenza di nuove particelle (hidden photons, Higgs scalari leggeri e assioni)
 - Test di violazione della simmetria discreta

Dati:

- Collisioni pp a 13 TeV 2017-2018 (~101 /fb)
- Eventi con almeno 2 μ nello stato finale

Strategia di trigger: "Muon Scouting stream"

- Obbiettivo: Acquisire più eventi mantenendo la stessa bandwidth rispetto allo standard stream
 - Salvare solo una quantità limitata di info per evento (~8 kB/event)
 - Trigger di due muoni ad alta rate (~2 kHz)

Strategia d'analisi:

- Selezioni offline basate su carica totale e vertice comune
- La BR di $\eta \to 4\mu$ è determinata in termini di quella di $\eta \to 2\mu$

Risultati:

- Si osserva un picco nello spettro della massa inv. dei 4 muoni
 - Significanza statistica > 5σ

$$\frac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = (0.9 \pm 0.1(\text{stat}) \pm 0.1(\text{syst})) \times 10^{-3}$$

$$\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8(\text{stat}) \pm 0.7(\text{syst}) \pm 0.7(\mathcal{B}_{2\mu})) \times 10^{-9}$$

Compatibile con il valore aspettato dal MS:

$$\mathcal{B}(\eta \to 4\mu) = (3.98 \pm 0.15) \times 10^{-9}$$

$J/Psi \rightarrow 4\mu$

Motivazioni:

Predetto dal Modello Standard (SM) con frazione di decadimento (BR):

$$\mathcal{B}(J/Psi \rightarrow 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$$
 [PhysRevD.104.094023]

Sensibile alla presenza di nuova fisica [s10052-020-08816-9]

Strategia d'analisi:

- Collisioni pp a 13 TeV (33.6 /fb) (2018 B Parking: Alta rate (5kHz), delayed processing)
- Selezioni offline basate su vertice comune, prob. del vertice e sulla cinematica della J/Psi
- La BR di J/Psi $\rightarrow 4\mu$ è determinata in termini di quella di J/Psi $\rightarrow 2\mu$

$$\frac{\mathcal{B}_{J/Psi\to 4\mu}}{\mathcal{B}_{J/Psi\to 2\mu}} = \frac{N_{J/Psi\to 4\mu}}{N_{J/Psi\to 2\mu}} / \frac{\varepsilon_{J/Psi\to 4\mu}}{\varepsilon_{J/Psi\to 2\mu}}$$

Ciascuna efficienza è ottenuta dal MC come rapporto fra eventi ricostruiti e generati

 $\mathcal{B}(J/Psi \to 2\mu) = (5.961 \pm 0.033) \times 10^{-2} \text{ [PDG]}$

$J/Psi \to 4\mu$

Risultati:

- Si osserva un picco nello spettro della massa inv. dei 4 muoni
 - Significanza statistica > 7σ

$$\frac{\mathcal{B}_{J/\psi\to 4\mu}}{\mathcal{B}_{J/\psi\to 2\mu}} = (16.9^{+5.5}_{-4.6}(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-6}$$

$$\mathcal{B}(J/\psi \to 4\mu) = (10.1^{+3.3}_{-2.7}(\text{stat}) \pm 0.4(\text{syst})) \times 10^{-7}$$

Compatibile con il valore atteso dal MS:

$$\mathcal{B}(J/\psi \to 4\mu) = (9.74 \pm 0.05) \times 10^{-7}$$

 $\tau \rightarrow 3\mu$

Decadimento nel Modello Standard

Motivazioni:

Il MS consente la violazione del sapore dei leptoni carichi (LFV) attraverso l'oscillazione dei neutrini, ma con BR piccole:

 $\mathcal{B}(\tau \to 3\mu) \sim \mathcal{O}(10^{-54})$ [Eur. Phys. J. C (2019) 79:84 Eur. Phys. J. C (2020) 80: 438]

- I decadimenti LFV sono un banco di prova per le testare nuova fisica
 [JHEP10(2018)148]
 - BR predette: $\mathcal{B}(\tau \to 3\mu) \sim \mathcal{O}(10^{-8})$

Strategia d'analisi:

$\tau \rightarrow 3\mu$

- Collisioni pp a 13 TeV (97.7 /fb) con un trigger dedicato per ciascun canale dell'analisi:
 - Heavy flavour (HF): tau da decadimenti di mesoni B e D
 - W: tau da decadimento del bosone W
- Candidati di segnale: 3 muoni a carica ±1 selezionati dal trigger + selezioni offline (vertice comune, qualità di ricostruzione, massa invariante)

Soppressione del fondo:

- Veti sulle risonanze φ→μμ e ω→μμ
- MVA per sopprimere i fake sviluppata appositamente per il canale HF
- MVA per la soppressione del background combinatorio
- Categorizzazione degli eventi basata sulla risoluzione della massa invariante
 - 3 categorie per anno e per canale

Marco Buonsante — IFAE — 05/04/2024

Risultati:

- Segnale estratto da fit di massima verosimiglianza della massa invariante dei 3 muoni per ciascuna categoria
 - HF: (gaussiana + crystalball) + esponenziale
 - W: gaussiana + polinomio
- Limite superiore osservato (atteso) al L.C. del 90%:
 - $\mathcal{B}(\tau \to 3\mu) < 3.1(2.7) \cdot 10^{-8}$ con i dati 2017/2018
- Includendo il risultato 2016 [JHEP01(2021)163]
 - $\mathcal{B}(\tau \to 3\mu) < 2.9(2.4) \cdot 10^{-8}$ al L.C. del 90%

Il miglior risultato ottenuto ad un collisore adronico!

Prospettive per Run 3

Presa dati Run 3:

- Condizioni di acquisizione dati più impegnative:
 - Maggiore PU (35 \rightarrow 50 interazioni per crossing) e stessa bandwidth.

Prospettive per Run 3

Strategia di trigger Run 3:

- Trigger inclusivo di due muoni:
 - Adatto per diversi studi $b \to sll$, charmonio e spettroscopia del B, LFV $\tau \to \mu\mu\mu$, ricerche esotiche e ricerca di $\eta \to \mu^+\mu^-e^+e^-$
- Di-electron trigger [PoS ICHEP2022 (2022) 681]
 - Adatto a ricerca di violazione dell'universalità del sapore leptonico
- Scouting migliorato: [arXiv:2403.16134*]
 - Per le risonanze sotto 11 GeV, performance di ricostruzione dei muoni scouting vs offline compatibili a 1-1.5%
 - Aumento della rate

Prospettive per Run 3

Esempio: analisi $\tau \rightarrow 3\mu$

Miglioramento anche del trigger dedicato a questa analisi con una minore soglia in $p_{\it T}$

- +60% di efficienza di trigger rispetto a Run 2
- Incremento yield/fb⁻¹ delle D_S misurato nei dati: 3200 \rightarrow 7200

Conclusioni

Decadimenti rari:

- Tutte analisi con muoni nello stato finale:
 - Possibili grazie a 3 diverse strategie di trigger (Scouting, B-Parking e Standard)

Prima osservazione dei decadimenti $\eta \to 4\mu$

BR 25% più alto dello SM
 ma comunque compatibile
 entro le incertezze

Prima osservazione del decadimento J/Psi $\rightarrow 4\mu$

 BR compatibile con il le predizioni dello SM Ricerca di $\tau \rightarrow 3\mu$

- Nessuna evidenza
- Miglior risultato ottenuto ad un collisore adronico

Prospettive Run 3:

- Condizioni di acquisizione dati più impegnative
- Miglioramenti nel sistema di trigger

Grazie per l'attenzione!

Backup

Studi del fondo:

Controllo eseguito per verificare la presenza di fondi che piccano intorno alla massa di η

- $\eta \to \mu^+ \mu^- \gamma$ con γ che converte nel materiale: non picca ed è shiftato ad alta m(4 μ)
- $\eta \to \mu^+ \mu^- \pi^+ \pi^-$ con π mis-identificati come μ : picca ma è shiftato a massa più bassa per via dell'errata ipotesi sulla massa dei π

Conclusione: nessuna possibile componente del fondo che picchi intorno alla massa di n

$\tau \to 3\mu$

Stato dell'arte:

- Non è stata trovata alcuna prova di questo decadimento.
- Limiti superiori sul $\mathcal{B}(\tau \to 3\mu)$ misurati da esperimenti e^+e^- e collisori adronici

Limiti superiori al livello di confidenza del 90%

$\tau \to 3\mu$

LHC è una fabbrica di τ

Due sorgenti principali di leptoni τ a LHC:

- Heavy Flavour (HF) channel (~ 99.9 %)
 - Basso p_T e alto $|\eta|$
 - Sensibile alla presenza di K e π mis-identificati come muoni
- W channel (~ 0.01 %)
 - Alto p_T e basso $|\eta|$

Process 1	Process 2	No. of τ^*
$pp \rightarrow c\bar{c} + \dots$	$D o au u_{ au}$	$11.8\cdot 10^{12}$
	$(95\%D_s,5\%D^\pm)$	
$pp o bar{b} +$	$B \to \tau \nu_{\tau} + \dots$	$5.45\cdot 10^{12}$
	$(44\%~B^\pm,45\%~B^0,11\%~B_s^0)$	
	$B \to D(\tau \nu_{\tau}) + \dots$	$1.86\cdot 10^{12}$
	$(98\% \ D_s, 2\% \ D^{\pm})$	
$pp \rightarrow W + \dots$	$W o au u_{ au}$	$1.99\cdot 10^9$
pp o Z +	Z o au au	$3.86\cdot 10^8$

^{*} Si riferisce al numero di τ previsto per una luminosità integrata di 97.7 fb^{-1}

Categorizazione degli eventi

Dati e MC sono divisi in tre categorie basate sulla risoluzione della massa invariante:

$$\sigma_m/m = \frac{\sqrt{\sum_{i=1}^3 (m(\delta \tau_i) - m(\tau))^2}}{m(\tau)}$$

dove $\delta \tau_i = (p_{Ti} + \delta p_{Ti}, \eta_i, \phi_i, m_i) + \sum_{j=1, j \neq i}^3 (p_{Tj}, \eta_j, \phi_j, m_j)$

• A
$$\frac{\sigma_m}{m} < 0.7\%$$

■ B:
$$0.7\% \frac{<\sigma_m}{m} < 1.1\%$$

• C:
$$\sigma_m/m > 1.1\%$$

Queste regioni sono correlate alla pseudorapidità dei muoni nello stato finale e riflettono la geometria del tracker interno che domina la risoluzione sui p_T per muoni a basso p_T

$\tau \to 3\mu$

J/Psi $\rightarrow 4\mu$

B-Parking dataset:

- Raccolti da trigger di singolo muone
- Rate che aumenta a gradini man mano che la rate del Physics Stream decresce
- Il dataset B-parking contiene ~10
 miliardi di decadimenti unbiased di adroni contenenti quark b
- Luminosità integrata pari a 41.5 ±1.0
 fb-1

_=

Signal-side: unbiased b hadron decays

Tag-side: b→µX