Incontri di Fisica delle Alte Energie 2024 4 April, 2024

B Meson Hadronic Decays and **Charm Physics Results at Belle II**

Shu-Ping Lin* On behalf of Belle II Italia

* <u>lin@pd.infn.it</u> — University of Padova and INFN

INFŃ PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA

Belle II Experiment

- Asymmetric-energy e^+e^- collisions at $\Upsilon(4S)$
 - $\sqrt{s} = 10.58 \text{ GeV} \approx 2m_B$
 - $B\bar{B}$ pairs production
 - Light $q\bar{q}$ pairs production (significant fraction of $e^+e^- \rightarrow c\bar{c}$)
- Run 1: $\mathscr{L}dt = 426 \, \text{fb}^{-1}$ ~ 390 M $B\bar{B}$ pairs $\sim 560 \,\mathrm{M}\,c\bar{c}\,\mathrm{pairs}$
- Run 2: data taking resumed on 20 Feb.

B Hadronic Decays

B Physics at Belle II

- Threshold and coherent production of *BB* pairs
- Precise knowledge of the collision energy
 - M_{bc} : beam-constrained mass
 - ΔE : difference in the reconstructed and expected *B* energy
- Excellent vertexing ($\sigma \sim 15 \ \mu m$)
- Determine flavour of signal *B* using features of the other B (tag) in the pair

Effective efficiency: $31.68 \% \rightarrow 37.40 \%$

Improved by 18% using a new algorithm

- * See poster on time-dependent *CP* violation by Cecilia Antonioli
- Continuum background ($e^+e^- \rightarrow q\bar{q}$) suppression \Rightarrow MVA trained with event shape variables

$B^- \rightarrow D^0 \rho^-$

- One of the the main channels for **hadronic tag** [Comp. Softw. Big Sci. 3, 6 (2019)]
- WA dominated by 1994 CLEO measurement *[PRD, 50, 43 (1994)]*
- Signal extracted from fit to ΔE
- Separate signal and **non-resonant** $B^- \rightarrow D^0 \pi^- \pi^0$ using angular distribution of ρ

 $\mathscr{B}(B^- \to D^0 \rho^-) = (0.939 \pm 0.021 \pm 0.050)\%$

More than a factor of 2 improvement in precision

• Systematically limited by π^0 efficiency knowledge

[2024 Moriond EW]

$B \rightarrow D^{(*)} K^{-} K^{*0}$

- $B \rightarrow DKK$: mostly unexplored sector
- Branching fractions measured with ΔE fit
- For final states with a K^* , fit $m(K\pi)$ to constrain nonresonant contribution
- 3 new DKK_S^0 channels observed, precision improved by a factor of 3 in other *DKK* channels [PLB 542, 171-182] (2002)
- Low-mass structure in $m(K^-K^{(*)0})$ qualitatively compatible with ρ or a_1 intermediate resonances

Channel	$\mathcal{B}[10^{-4}]$
$B^- \rightarrow D^0 K^- K_S^0$	$1.82 \pm 0.16 \pm 0$
$\overline{B}{}^0 \to D^+ K^- K^0_S$	$0.82 \pm 0.12 \pm 0$
$B^- \to D^{*0} K^- \tilde{K}^0_S$	$1.47\pm0.27\pm0.27$
$\overline{B}{}^0 \to D^{*+} K^- K_S^{\widetilde{0}}$	$0.91\pm0.19\pm0$
$B^- \rightarrow D^0 K^- K^{*0}$	$7.19 \pm 0.45 \pm 0$
$\bar{B}^0 \rightarrow D^+ K^- K^{*0}$	$7.56\pm0.45\pm0.$
$B^- \rightarrow D^{*0} K^- K^{*0}$	$11.93 \pm 1.14 \pm$
$\bar{B}^0 \to D^{*+} K^- K^{*0}$	$13.12\pm1.21\pm$

6

2024 Moriond EW

Charm Physics

$D^{U} \rightarrow hh'e^{+}e^{-}$

- Belle only analysis, $h^{(')} = K, \pi$
- FCNC $c \rightarrow ull$ are suppressed in SM, probes BSM contributions
- Dominated by SM long distance contributions
- Reconstruct decays in **different** $m(e^+e^-)$ regions:
 - Near resonance: BF measurement
 - Far from resonance: sensitive to BSM physics
- In the ρ/ω region:

 $\mathscr{B}(D^0 \to K^- \pi^+ e^+ e^-) = (39.6 \pm 4.5 \pm 2.9) \times 10^{-7}$

Compatible with BaBar and SM expectations

- No signal observed in other regions and channels
 - Upper limits: $[2 8] \times 10^{-7}$ at 90 % CL (best to date)

BESIII: <u>PRD 97, 072015 (2019)</u> BABAR: <u>PRL 122, 081802 (2019)</u> LHCb: <u>PRL 119, 181805 (2017)</u>, <u>PLB 757, 558 (2016)</u> MSSM: *PRD 66, 014009 (2002)*

- First measurements of these decays

Asymmetry parameter α related to *P* violation through differential decay rate:

 $\frac{dN}{d\cos\theta_{\Xi^0}} \sim 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$

$\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.91 \pm 0.15 \pm 0.23$

9

CKM Angles Measurements

Towards CKM angle ϕ_2/α

$$\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
 Least prec

- Current world average: $\phi_2 = (85.2^{+4.8}_{-4.3})^\circ$
- Combine information from BF and \mathscr{A}_{CP} measurement of
 - $B^0 \to \rho^+ \rho^-, B^+ \to \rho^+ \rho^0, B^0 \to \rho^0 \rho^0$
 - $B^0 \rightarrow \pi^+ \pi^-$, $B^+ \rightarrow \pi^+ \pi^0$, $B^0 \rightarrow \pi^0 \pi^0$

to reduce impact of hadronic uncertainties exploiting isospin symmetry

- Measurements of $B \rightarrow \rho \rho$ requires a complex angular analysis
- Preliminary results on par with best performances from Belle/ BaBar due to optimised selections and continuum suppression

Belle: <u>PRL 91 221801 (2003)</u>, <u>PRD 93, 032010 (2016)</u> BaBar: PRL 102, 141802 (2009), PRD 74, 052007 (2007)

- cisely known angle

$$B^{+} \rightarrow \rho^{+} \rho^{0}$$
$$\mathscr{B} = (23.2^{+2}_{-2})$$
$$f_{L} = 0.943$$
$$\mathscr{A}_{CP} = -0.069$$

$$B^{0} \rightarrow \rho^{+} \rho^{-}$$
$$\mathscr{B} = (26.7 \pm 10)$$
$$f_{L} = 0.956 \pm 10$$

arXiv:2208.03554 $2.8 \pm 2.8) \times 10^{-6}$ $\pm 0.035 \pm 0.033$

Towards CKM angle ϕ_2/α

• $B^0 \rightarrow \pi^+ \pi^-, B^+ \rightarrow \pi^+ \pi^0$

• $B^0 \rightarrow \pi^0 \pi^0$

- Only photons in the final state → MVA trained with ECL variables
- CKM-suppressed and colour-suppressed
- Achieves Belle's precision using only 1/3 of data

 $\mathscr{B}(\pi^0 \pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$ $\mathscr{A}_{CP}(\pi^0\pi^0) = 0.14 \pm 0.46 \pm 0.07$

Phys. Rev. D 109, 012001 (2024)

$$\mathscr{B}(\pi^+\pi^-) = (5.83 \pm \mathscr{B}(\pi^+\pi^0)) = (5.10 \pm \mathscr{A}_{CP}(\pi^+\pi^0)) = -0.0$$

- ϕ_3 accessed with interfering decays to the same final states
- Tree-level dominated: no (large) BSM contribution
- First combination of all Belle and Belle II measurements

HFLAV: $\phi_3^{WA}(^\circ) = 66.2^{+3.4}_{-3.6}$

B decay	D decay	Method	Data set	Ref
			$(\text{Belle} + \text{Belle II})[\text{fb}^{-1}]$	
$B^+ \to Dh^+$	$D \rightarrow K_{ m s}^0 h^- h^+$	BPGGSZ	711 + 128	[JHEP, 02
$B^+ \to Dh^+$	$D \to K^0_{\rm S} \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0	[JHEP, 10
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 \pi^0, K^- K^+$	GLW	711 + 189	[arXiv:2
$B^+ \to Dh^+$	$D \to K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0	[<u>PRL, 106,</u>
$B^+ \to Dh^+$	$D \to K^0_{ m s} K^- \pi^+$	GLS	711+362	- [JHEP, 09
$B^+ \to D^* K^+$	$D^* \to D\pi^0/\gamma, D \to K^0_{ m S}\pi^-\pi^+$	BPGGSZ	605 + 0	[PRD, 81,
$D^+ \rightarrow D^* U^+$	$D^* \to D\pi^0, D \to K^0_{ m S}\pi^0, K^0_{ m S}\phi, K^0_{ m S}\omega,$	OTW		
$D' \to D' K'$	$K^-K^+,\pi^-\pi^+$	GLW	210+0	[<u>PRD</u> , 73, 0

ϕ_3/γ : Belle + Belle II Combination

2024 Moriond EW

<u>2, 063 (2022)]</u> <u>0, 178 (2019</u>)] <u>2308.05048</u>] <u>231803 (2011)</u>] <u>9, 146 (2023)</u>] <u>112002 (2010)</u>] <u>051106 (2006)]</u>

Summary

- Competitive precisions despite smaller dataset
- Improve *B* decay knowledge in $B^- \rightarrow D^0 \rho^-$ and $B \rightarrow DKK$ decays
- Study of rare FCNC decay $D^0 \rightarrow hh'e^+e^-$
- First measurement of $\Xi_c^0 \to \Xi^0 h^0$ decays
- $B \rightarrow \rho \rho$ decays

• Measurements made with data collected by Belle II run 1, Belle only, and Belle + Belle II.

• Contribution towards the determination of ϕ_2/α with measurements of $B \to \pi\pi$ and

• Refine ϕ_3/γ measurement strategies by combining all Belle and Belle II measurements

Backup

BU $\rightarrow \eta' K_{\varsigma}^{0}$

- Signal extracted from fit to $\Delta E, M_{bc}, CS$ output
- Validated on control channel $B^+ \rightarrow \eta' K^+$

$$S = 0.67 \pm 0.10 \pm 0.04$$
$$C = -0.19 \pm 0.08 \pm 0.03$$

- Statistically limited
- Precision comparable to Belle/BaBar despite smaller dataset

16

