

NUOVI RISULTATI DALLE ANALISI DEI DECADIMENTI RARI DEI K E DEI π ALL'ESPERIMENTO NA62

llaria Panichi

INFN and Università degli Studi di Firenze, per la Collaborazione

Firenze 3-5 Aprile 2024

.PANICHI / IFAE, FIRENZE 3-5 APRILE 2024

L'ESPERIMENTO NA62

- Separation Separation K^+ Esperimento a bersaglio fisso al SPS del CERN dedicato ai decadimenti rari del K^+
- ✤ Ricostruzione in volo dei decadimento del K^+
- Dati di fisica raccolti nel 2016-2017-2018 (Run1) e 2021-2022-2023 (a oggi Run2)
- Scopo principale: misurare $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, golden channel per la fisica del flavour

 $BR_{MS}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (7.86 \pm 0.61) \times 10^{-11} \text{ [JHEP09(2022)148, JHEP11(2015)033]}$

 $BR_{NA62 Run1}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4 stat} \pm 0.9_{syst}) \times 10^{-11} \text{ al } 68\% \text{ CL} (3.4 \sigma \text{ significance})$ [JHEP06(2021)093]

- ma il programma di fisica è molto più vasto, es:
 - misure di precisione del MS: $\pi^0 \rightarrow e^+e^-$, $K^+ \rightarrow \pi^+\gamma\gamma \rightarrow OGGI$
 - ricerca di NF tramite i processi LFV $(K^+ \rightarrow \pi^+ l_1^+ l_2^-)$ e LNV $(K^+ \rightarrow \pi^- l^+ l^+)$
 - fisica dell'Hidden Sector: ricerca diretta di NF al di sotto della scala elettrodebole nei decadimenti del K⁺ e in un programma di beam-dump dedicato

•

L'APPARATO SPERIMENTALE DI NA62

(PROGETTATO E OTTIMIZZATO PER LO STUDIO DEL $K^+ o \pi^+
u \overline{
u}$)

Fascio secondario:

 $(70\%)\pi^+, (24\%)p, (6\%)K^+$ non separati selezionati a 75 GeV/c ($\Delta p/p \sim 1,1\%$)

[JINST 12 (2017) P05025]

Rate nominale di particelle al GTK3: ~600 MHz * CHOD Rate di decadimento dei K^+ nel FV ($Z \in [105; 170] m$): 3 MHz * μ^+/π^+ ID Charged hodoscope **STRAW** LAV $(\sigma_t = 70 \text{ ps})$ ۲ [m] chambers Large-angle photon veto 2 spectrometer (12 stations) **MUV1,2** hadronic calorimeters **GTK** Iron 400 GeV/c 1 RICH MUV3 Si-pixel beam **SPS** protons muon detector spectrometer on **Be taraet** VACUUM 0 0(10⁻⁶) mbar RICH -1 Dump **CHANTI Small-angle KTAG** Magnet charged anti-counter photon veto -2 **LKr** differential Cherenkov counter for K^+ ID ($\sigma_t = 70$ ps) **EM** calorimeter \neg 0 100 150 200 250 → Z [m] Identificazione e misura delle Studio dei prodotti di Regione fiduciale di particelle del fascio secondario decadimento dei K^+ decadimento dei K^+

RICERCA DEL DECADIMENTO $\pi^0 \rightarrow e^+ e^- A NA62$ (RISULTATO PRELIMINARE)

PANICHI / IFAE, FIRENZE 3-5 APRILE 2024

$\pi^0 \rightarrow e^+ e^-$: STATO DELL'ARTE

Osservabile sperimentale:

 $BR(\pi^0 \to e^+e^-(\gamma), x > x_{taglio}), \qquad x = (P_{e^+} + P_{e^-})^2/m_{\pi^0}^2 = m_{ee}^2/m_{\pi^0}^2$

- ♦ il decadimento Dalitz del π^0 ($\pi^0 → \gamma e^+ e^- \equiv \pi_D^0$) domina a basse x
- ♦ per $x > x_{taglio} = 0.95$, π⁰ Dalitz ~ 3.3% di $BR(\pi^0 → e^+e^-(\gamma))$
- Miglior misura precente ([Phys.Rev.D 75(2007)012004]):

 $BR_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.25_{stat} \pm 0.22_{sys}) \times 10^{-8}$

 Per confrontare il risultato sperimentale con la teoria è necessario considerare le correzioni radiative (calcoli più recenti in [JHEP10(2011)122], [Eur.Phys.J.C 74(2014)8,3010])

	$BR(\pi^0 \rightarrow e^+e^-, \text{no rad}) \times 10^8$
KTeV, PRD 75 (2007)	6.84(35)
Knecht et al., PRL 83 (1999)	6.2(3)
Dorokhov and Ivanov, PRD 75 (2007)	6.23(9)
Husek and Leupold, EPJC 75 (2015)	6.12(6)
Hoferichter et al., PRL 128 (2022)	6.25(3)

Diagramma considerato per le previsioni teoriche di $BR(\pi^0 \rightarrow e^+e^-, \text{no rad})$ per diversi fattori di forma del processo $\pi^0 \rightarrow \gamma^*\gamma^*$

$\pi^0 \rightarrow e^+ e^-$ a NA62: STRATEGIA DI ANALISI

- Analisi dei dati raccolti da NA62 nel 2017 e 2018
- * Segnale: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \equiv K^+ \rightarrow \pi^+ \pi^0_{ee}$
 - Nella simulazione sono incluse le correzioni radiative più recenti
 - Variabile discriminante: massa inavariante e^+e^- ($m_{ee}=\sqrt{P_{e^-}+P_{e^+}}$)
- ♦ Fondi rispetto al segnale $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$
 - $K^+ \rightarrow \pi^+ e^+ e^-$ (irriducibile): piatto nella regione attorno alla massa del π^0
 - $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma e^+ e^- \equiv K^+ \rightarrow \pi^+ \pi_D^0$
 - a) ha una lunga coda a grandi $x = m_{ee}^2/m_{\pi^0}^2$ dovuta al π^0 Dalitz
 - b) il γ può convertire nelle STRAW e un e^{\pm} dalla conversione essere selezionato per ricostruire m_{ee}
 - $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- e^+ e^- \equiv K^+ \rightarrow \pi^+ \pi^0_{DD}$, in cui due tracce del decadimento Dalitz doppio del π^0 non sono rivelate
- ↔ II *BR* è misurato relativamente a un canale di **normalizazione**, il $K^+ \rightarrow \pi^+ e^+ e^-$
 - stesso stato finale del segnale + criteri di selezione comune → cancellazione (al primo oridine) di effetti sistematici
- Selezione comune
 - Topologia di un vertice a tre tracce (STRAW)+ tagli temporali (CHOD, KTAG)
 - vincoli cinematici sull'impulso totale e trasverso del vertice
 - LKr+STRAW (E/p) e cinematica del decadimento ($m_{\pi ee}, m_{ee}$) per identificare le particelle di stato finale
 - Hits e segmenti nelle STRAW per ridurre il fondo da conversioni

CAMPIONE DI NORMALIZZAZIONE $K^+ \rightarrow \pi^+ e^+ e^-$

- Selezione commune
- Definizione di una regione di normalizzazione: $m_{ee} > 140 MeV/c^2$
- Numero di eventi osservati: 12160
- Accettanza della selezione di normalizzazione:

 $A(K^+ \rightarrow \pi^+ e^+ e^-) = (4.70 \pm 0.01_{stat})\%$

- Purezza del campione > 99.9%
- ★ Numero effettivo di decadimenti del K^+ : (incertezza esterna da $BR_{PDG}(K^+ \rightarrow \pi^+ e^+ e^-) = (3.00 \pm 0.09) \times 10^{-7}$)

$$N_k = (8.62 \pm 0.08_{stat} \pm 0.26_{ext}) \times 10^{11}$$

CAMPIONE DI SEGNALE $K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow e^+ e^-$

- Selezione comune
- ✤ Definizione di una regione di fit per l'estrazione del segnale: $m_{ee} \in (130, 140) \ MeV/c^2$
- Accettanza della selezione del segnale ($x_{vero} > 0.95$): $A(K^+ → \pi^+ \pi^0_{ee}) = (5.72 \pm 0.02_{stat})\%$
- BR ottenuto tramite un fit di maximum likelihood ai dati dei campioni simulati:

 $BR(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat}) \times 10^{-8}$

- i BR dei fondi sono input esterni noti (da PDG 2023)
- il numero di eventi di segnale restituito dal fit è 597 \pm 29
- $\chi^2/NDF = 25.3/19, p value = 0.152$

$\pi^0 \rightarrow e^+ e^-$: RISULTATO (PRELIMINARE) E INCERTEZZE

 $BR_{NA62}\left(\pi^{0} \rightarrow e^{+}e^{-}(\gamma), x > 0.95\right) = \left(5.86 \pm 0.30_{stat} \pm 0.11_{syst} \pm 0.19_{ext}\right) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

	$\delta BR[\times 10^{-8}]$	$\delta BR/BR$ [%]
Incertezza statistica	0.30	5.1
Incertezza esterna totale	0.19	3.2
Incertezza sistematica totale	0.11	1.9
Efficienza di trigger	0.07	1.2
Correzioni radiative $\pi^0 \rightarrow e^+e^-$	0.05	0.9
Fondi	0.04	0.7
Ricostruzione e identificazione delle particelle	0.04	0.7
Simulazione del fascio	0.03	0.5

$$\pi^0 \rightarrow e^+e^-$$
: CONCLUSIONI E CONFRONTI

Nuovo risultato preliminare basato sui dati raccolti da NA62 nel 2017 e 2018

 $BR_{NA62}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat} \pm 0.11_{syst} \pm 0.19_{ext}) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

Il valore centrale ottenuto è minore rispetto a quello di KTeV ma le due misure sono consistenti

 $BR_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.25_{stat} \pm 0.22_{svs}) \times 10^{-8}$

Tenendo conto delle correzioni radiative, l'estrapolazione del risultato è in accordo con le previsioni teoriche:

 $BR_{NA62}(\pi^0 \to e^+e^-, non \, rad) = (6.22 \pm 0.39) \times 10^{-8}$

 $BR_{th(2022)}(\pi^0 \rightarrow e^+e^-, non \, rad) = (6.25 \pm 0.03) \times 10^{-8}$

RICERCA DEL DECADIMENTO $K^+ \rightarrow \pi^+ \gamma \gamma$ A NA62 (PHYS. LETT. B 850 (2024) 138513)

PANICHI / IFAE, FIRENZE 3-5 APRILE 2024

$$K^+ \rightarrow \pi^+ \gamma \gamma$$
: LE MOTIVAZIONI

- Test cruciale della Teoria perturbativa chirale (ChPT)
- Il decadimento può essere descritto da due variabili cinematiche :

$$z = \frac{(q_1 + q_2)^2}{M_K^2} = \left(\frac{m_{\gamma\gamma}}{M_K}\right)^2$$
, $y = \frac{p \cdot (q_1 - q_2)}{M_K^2}$

- $p = \text{quadrimpulso del } K^+$ $q_{1,2} = \text{quadrimpulso del } \gamma_{1,2}$ $M_K = \text{massa del } K^+, \quad M_\pi = \text{massa del } \pi^+$ $m_{\gamma\gamma} = \text{massa invariante dei due fotoni}$ $\lambda(a, b, c) = a^2 + b^2 + c^2 2(ab + ac + bc)$ $r_\pi = M_\pi/M_K$
- In ChPT (al leading-order $O(p^4)$ e includendo I contributi al next-to-leading order $O(p^6)$) la larghezza di decadimento e lo spettro dipendono da un unico parametro reale incognito a priori, ĉ (di O(1))

$$\frac{\partial^2 \Gamma}{\partial y \partial z} = \frac{M_K^2}{2^9 \pi^3} \left[z^2 (|A(\hat{c}, z, y^2) + B(z)|^2 + |C(z)|^2) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

[Phys.Lett.B386(1996)403]

B appare a $\mathcal{O}(p^6)$; domina a basse z

- C = pole amplitude; contributo di qualche % al tot ; A, B = loop amplitudes;
- a $\mathcal{O}(p^6)$ le ampiezze dipendono da parametri esterni [Phys.Lett.B835 (2022)137594]
- **Obbiettivi dell'analisi:** determinare \hat{c} in ChPT ; misurare $BR(K^+ \rightarrow \pi^+ \gamma \gamma)$

$K^+ \rightarrow \pi^+ \gamma \gamma A NA62$: STRATEGIA DI ANALISI

[PLB 850 (2024) 138513]

Dati NA62 2017+2018

- ♦ Variabile cinematica discriminante: $z = (P_K P_\pi)^2 / m_K^2$
 - ***** Regione di segnale: 0.20 < z < 0.51
- Fondi principali (stimati da MC, validati con regioni di controllo):
 - $K^+ \rightarrow \pi^+ \pi^0(\gamma), \pi^0 \rightarrow \gamma \gamma$ per via del merging dei clusters prodotti dai γ nel calorimetro em LKr
 - $K^+ \rightarrow \pi^+ \pi^- \pi^-$ quando le tracce di π^+, π^- non sono ricostruite dallo spettrometro STRAW
- * BR misurato rispetto a un canale di normalizzazione, $K^+ \to \pi^+ \pi^0 (\pi^0 \to \gamma \gamma)$
 - stessa topologia del segnale + selezione comune → cancellazione al prim'ordine di effetti sistematici
 - Regione di normalizzazione: 0.04 < z < 0.12 ($m_{\gamma\gamma} = m_{\pi^0} \rightarrow z = 0.075$)
 - $N_k = (5.55 \pm 0.03) \times 10^{10}$
- Selezione comune
 - Singola traccia carica identificata come π^+ associata con una traccia K^+ + due clusters prodotti da γ nel LKr ben separati dall'estrapolazione della traccia all'LKr (250 mm) + tagli temporali
 - LKr+STRAW (E/p) + MUV3 in veto per identificare il π^+
 - Vincoli cinematici sulla massa invariante totale $m_{\pi\gamma\gamma}$ e sull'impulso totale $p_{\pi\gamma\gamma}$ per identificare lo stato finale
 - Taglio sull'rms della larghezza massima dei cluster per ridurre il fondo dovuto al merging

$K^{+} \rightarrow \pi^{+} \gamma \gamma : \hat{c} \text{ IN CHPT}$ [PLB 850 (2024) 138513]

- Dati NA62 2017+2018. Numero di eventi osservato: $N^{obs} = 3894$. Numero di eventi di fondo atteso: $N^{exp}_{bkg} = 291 \pm 14$.
- * \hat{c} è stimato nelle descrizioni di ChPT $\mathcal{O}(p^4)$ e $\mathcal{O}(p^6)$ tramite fit del min- χ^2 dello spettro di z ricostruito dei MC a quello dei dati
- ♦ $p value = 2.7 \times 10^{-8}$ assumendo la descrizione ChPT $O(p^4) \rightarrow$ non è sufficiente per descrivere lo spettro dei dati
- ♦ p value = 0.49 assumendo la descrizione ChPT $O(p^6)$;

$BR(K^+ \rightarrow \pi^+ \gamma \gamma)$ [PLB 850 (2024) 138513]

- ♦ Parametro \hat{c} misurato: $\hat{c}_{ChPT \ \mathcal{O}(p^6)} = 1.144 \pm 0.069_{stat} \pm 0.034_{syst}$
- * BR che si ottiene integrando l'ampiezza differenziale della ChPT $\mathcal{O}(p^6)$ su tutto il range cinematico:

$$BR_{ChPT \ O(p^6)}(K^+ \to \pi^+ \gamma \gamma) = (9.61 \pm 0.15_{stat} \pm 0.07_{syst}) \times 10^{-7}$$

Stima model-independent di BR:

 $BR_{MI}(K^+ \rightarrow \pi^+ \gamma \gamma | z > 0.20) = (9.46 \pm 0.19_{stat} \pm 0.07_{syst}) \times 10^{-7}$

PRIMA RICERCA DI ALP NEL CANALE $K^+ \rightarrow \pi^+ a, a \rightarrow \gamma \gamma$ [PLB 850 (2024) 138513]

- ✤ a = ALP che si accoppia con i gluoni (scenario BC11; parametri liberi: massa ALP m_a e mixing ¹/_{fg});
- Ricerca di una risonanza nella distribuzione di m_{miss} = $\sqrt{(P_K P_{\pi^+})^2}$ nell'intervallo di massa (207 350 MeV/c²)
- Per ogni ipotesi di massa dell'ALP:
 - selezione definita per il $K^+ \rightarrow \pi^+ \gamma \gamma +$ $|m_{miss} - m_a| < 1.5\sigma_a (\sigma_a risoluzione in massa; va da 2.0 MeV/c² a 0.2 MeV/c² sul range di <math>m_a$ considerate);
 - il fondo atteso e l'accettanza del segnale (< 8%) sono stimati dal MC
 - I'UL del numero di eventi di segnale è determinato tramite il metodo CLs

 $K^+ \rightarrow \pi^+ X_{inv}$ in JHEP06(2021)093 $\pi^0 \rightarrow X_{inv}$ in JHEP02(2021)201

CONCLUSIONI

PANICHI / IFAE, FIRENZE 3-5 APRILE 2024.

CONCLUSIONI

- ♦ NA62 é un esperimento dedicato alle misura dei decadimenti rari del K⁺; è progettato per lo studio del decadimento K⁺ → $\pi^+ \nu \bar{\nu}$ (BR ~ $O(10^{-10})$) e ha un programma di fisica molto vasto
- Nuove misure di precisione sono state pubblicate da NA62 sui dati del Run1:
 - $\succ ~ BR(~\pi^0
 ightarrow e^+e^-)$ (nuovo, preliminare)
 - > Precisione comparabile a quella della misura precedente, dominata dalla statistica
 - > In pieno accordo con le previsioni teoriche
 - > $BR(K^+ \to \pi^+ \gamma \gamma)$ [Phys. Lett. B 850 (2024) 138513]
 - > risultato consistente entro una deviazione standard dalle misure precedenti
 - > ma con precisone maggiore (× 10 candidati selezionati), dominata dalla statistica
 - > prima evidenza sperimentale di una descrizione al next-to-leading order in ChPT
 - > prima ricerca di ALP con accoppiamento con gluoni nel decadimento $K^+ \rightarrow \pi^+ a, a \rightarrow \gamma \gamma$
- Nel 2021 la presa dati di NA62 è ripartita (fino al LS3), rendendo disponibili campioni di dati più larghi da analizzare

Back-Up

NA62 TIMELINE & DATASETS

- ✤ Approvazione: 2008
- ♦ R&D del rivelatore e installazione: 2009 \rightarrow 2015
- Messa in opera e commissioning 2015
- * Run 1 (2016-2017-2018)
 - > 2016: ~ 2×10^{11} decadimenti del K⁺
 - > 2017: ~ 2×10^{12} decadimenti del K⁺
 - > 2018: ~ 4×10^{12} decadimenti del K⁺
- * Run 2 (2021 a oggi)
 - ➢ fino al LS3

Rare kaon decays: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

. 20

Flavour changing neutral current process with high CKM suppression
 Dominated by short distances: clean theoretical prediction
 Hadronic matrix element from semi-leptonic data

Making the dependence of the CKM explicit:

$$BR_{SM}(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.6} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

Taking $|V_{cb}|_{avg} = (40.7 \pm 1.4) \times 10^{-3}$, $|V_{ub}|_{avg} = (3.88 \pm 0.29) \times 10^{-3}$ and $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$:

$$BR_{SM}(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

I.PANICHI / IFAE, FIRENZE 3-5 APRILE 2024

(0,0) (1,0) Independent determination of unitary trianglefor K meson system

$\pi^0 \rightarrow e^+ e^-$: CORREZIONI RADIATIVE

[EUR.PHYS.J.C 74 (2014) 8, 3010]

Fig. 2 Two-loop virtual radiative corrections for $\pi^0 \rightarrow e^+e^-$ process

Fig. 3 Bremsstrahlung Feynman diagrams for $\pi^0 \rightarrow e^+ e^-$ process including counterterms

$K^+ \rightarrow \pi^+ \gamma \gamma$: *z* RESOLUTION [PLB 850 (2024) 138513]

$$z = \left(m_{\gamma\gamma}/m_K \right)^2 = (P_K - P_\pi)^2/m_K^2$$

- The photon candidates information is not used to determine the reconstructed z, which reduces systematic uncertainties and improves the z resolution
- ♦ the resolution varies from 3.5×10^{-3} at z = 0.20 to zero

$K^+ \rightarrow \pi^+ \gamma \gamma$: BAKGROUND AND ERROR BUDGET [PLB 850 (2024) 138513]

Solutions and the $K_{\pi\nu\nu}$ sample are estimated from MC and validated in control regions

Source	Estimated background	
$K^{+} \rightarrow \pi^{+} \pi^{0} \gamma$ $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$ $K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ $K^{+} \rightarrow \pi^{0} e^{+} \nu(\gamma)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	γ merging in LKr out-of-acceptance tracks γ merging in LKr $e^+mis - id as \pi^+ + \gamma$ from the π^0 decay not detected
Total	$291 \pm 8_{\rm stat} \pm 12_{\rm syst}$	-

Systematic uncertainties for \hat{c} , $BR_{ChPT}(K^+ \to \pi^+ \gamma \gamma)$ and $BR_{MI}(K^+ \to \pi^+ \gamma \gamma, z > 0.2)$ measurements

Source	δĉ	$\delta \mathcal{B} \times 10^7$	$\delta \mathcal{B}_{\rm MI}(z>0.2)\times 10^7$
Number of kaon decays	0.026	0.056	0.064
Simulation of multi-photon backgrounds	0.016	0.034	0.026
Simulation of $K_{3\pi}$ background	0.001	0.002	0.003
Limited size of simulated samples	0.014	0.030	0.018
Total	0.034	0.072	0.072

$K^+ \rightarrow \pi^+ X \text{ AT NA62}$

[JHEP06(2021)093]

- ★ $K^+ → \pi^+ X$, with X = invisible new particle: dark scalar, ALP, QCD Axion ... decaying into invisible or long-lived
- Same experimental signature as SM K⁺ → π⁺νν̄
 - ★ $K^+ \rightarrow \pi^+ X$: mainly analysis of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ spectrum
 - Main SM bkg: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- Whole NA62 Run1 data set analysed
- New upper limits improve on BNL-E949 [PRD79 (2009) 092004] over most of m_X accessible range

Model-independent results for X long-lived and decaying into SM Results interpreted in a scenario where X is a dark scalar mixing with the SM Higgs; $\sin^2 \theta$ is the mixing parameter