



# Ultimi risultati per i decadimenti rari ed estremamente rari a LHCb

Gabriele Martelli Università degli Studi di Perugia e INFN Perugia A nome della collaborazione LHCb

> Firenze, 3 – 5 Aprile 2024 Incontri di Fisica delle Alte Energie







- "Observation of the rare decay  $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ "
  - Ad oggi la misura più precisa su  $\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-)$
  - LHCb-CONF-2024-001 Articolo in preparazione
- Search for the  $B_s^0 \rightarrow \mu^+ \mu^- \gamma''$ 
  - Primo limite con la ricostruzione completa dello stato finale
  - LHCb-PAPER-2023-045 Articolo in preparazione
- > "Measurement of the branching fraction ratio  $\mathcal{B}(\phi \to \mu^+ \mu^-)/\mathcal{B}(\phi \to e^+ e^-)$  with charm meson decays"
  - Primo test di LFU nei decadimenti dei mesoni  $\phi$
  - [arXiv:2402.01336] Sottomesso il 2 Febbraio 2024 alla rivista JHEP
  - Comprehensive analysis of local and nonlocal amplitudes in the  $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  decay"
    - Analisi d'ampiezza
    - Misura diretta dei coefficienti di Wilson
    - LHCb-PAPER-2024-011 Articolo in preparazione

### L'esperimento LHCb



- > Spettrometro a singolo braccio in avanti
- > Pseudorapidità coperta:  $2 < \eta < 5$

#### Vertex Locator

- Ricostruzione dei vertici di decadimento
- Risoluzione sul tempo di decadimento: 45 fs
- Risoluzione sul punto di interazione: 20 µm

#### > Dipole Magnet

• Forza di deflessione: 4 Tm

#### Stazioni di tracking TT e OT

• Risoluzione sul momento  $\Delta p/p = 0.5\% - 1.0\%$ (5 GeV/c - 100 GeV/c)

#### ► Rivelatori RICH

- Efficienza di separazione  $\varepsilon(K \rightarrow K) \sim 95\%$ mis-ID  $\varepsilon(\pi \rightarrow K) \sim 5\%$
- Calorimetri (ECAL, HCAL)
  - Identificazione e misura energetica di  $e/\gamma$
  - $\Delta E/E = 1 \% \oplus 10 \%/\sqrt{E (GeV)}$

#### Stazioni muoniche

Efficienza di identificazione  $\varepsilon(\mu \rightarrow \mu) \sim 97\%$ , mis-ID  $\varepsilon(\pi \rightarrow \mu) \sim 1-3\%$ 



 $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ 



- >  $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  è un decadimento elettromagnetico raro
  - Stato finale radiativo (FSR) con emissione di  $\gamma^*$  da  $J/\psi \rightarrow \mu^+\mu^-$
  - Predizione del Modello Standard:

 $\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (9.74 \pm 0.05) \times 10^{-7}$  [Phys. Rev. D 104, 094023]

- Interesse
  - Studio di processi elettromagnetici rari e QED
    - Larghezza di decadimento forte soppressa regola OZI
  - Ricerca di Nuova Fisica nel processo FSR

 $\checkmark J/\psi \to XX \to \mu^+ \mu^- \mu^+ \mu^-$ 

Stato dell'arte





 $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ 



- $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  è un decadimento elettromagnetico raro
  - Stato finale radiativo (FSR) con emissione di  $\gamma^*$  da  $J/\psi \rightarrow \mu^+\mu^-$
  - Predizione del Modello Standard: •

 $\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (9.74 \pm 0.05) \times 10^{-7}$  [Phys. Rev. D 104, 094023]

- Interesse
  - Studio di processi elettromagnetici rari e QED
    - ✓ Larghezza di decadimento forte soppressa regola OZI
  - Ricerca di Nuova Fisica nel processo FSR

 $\checkmark I/\psi \rightarrow XX \rightarrow \mu^+\mu^-\mu^+\mu^-$ 

Stato dell'arte



minin

Nuovo risultato!!!!

Presentato a

Ultimi risultati per i decadimenti rari ed estremamente rari a LHCb

- "Observation of the rare decay  $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ "
  - LHCb-CONF-2024-001 Articolo in preparazione
  - $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 5.4 \text{ fb}^{-1}$
- ► Strategia
  - Misura di  $\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-)$
  - Analisi su campioni "prompt" e "secondari"
  - $J/\psi \rightarrow \mu^+\mu^-$  come canale di normalizzazione

$$R_{BR} = \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-)}{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}$$

Risultati

 $R_{BR} = (1.89 \pm 0.17_{stat.} \pm 0.08_{sist.}) \times 10^{-5}$ 

 $\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (1.13 \pm 0.10_{stat.} \pm 0.05_{sist.} \pm 0.01_{est.}) \times 10^{-6}$ 

- Distribuzioni  $m_{\mu^+\mu^-}$  in accordo con i modelli QED
  - Nessuna struttura risonante osservata ...





# $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ - Analisi



 $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\gamma$ 



- ►  $b \rightarrow s\ell^+\ell^-$  è soppressa al livello "albero"
  - Flavour Changing Neutral Current (FCNC)
  - Sensibile a contributi di Nuova Fisica

#### ► Interesse

- $B_s^0 \to \mu^+ \mu^- \gamma$  è sensibile a molti operatori  $\mathcal{O}$  $\checkmark B_s^0 \to \mu^+ \mu^-$  sensibile solo a  $\mathcal{O}'_{10}$
- $\gamma$  rimuove la soppressione chirale
  - $\checkmark \quad \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) \sim \mathcal{B}(B_s^0 \to \mu^+ \mu^-)$

#### ► Stato dell'arte





# $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ - Analisi



- Search for the  $B_s^0 \to \mu^+ \mu^- \gamma''$ 
  - LHCb-PAPER-2023-045 Articolo in preparazione
  - $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 5.4 \text{ fb}^{-1}$
- ► Strategia
  - Misura di  $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)$  $\checkmark$  Tre bin di  $q^2$  (I, II, III)
  - $B_s^0 \to J/\psi\eta$  come canale di normalizzazione

 $\checkmark J/\psi \to \mu^+ \mu^- \ {\rm e} \ \eta \to \gamma \gamma$ 

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) = \frac{\mathcal{B}(B_s^0 \to J/\psi\eta)}{N_{B_s^0 \to J/\psi\eta}} \times \frac{\varepsilon_{B_s^0 \to J/\psi\eta}}{\varepsilon_{B_s^0 \to \mu^+ \mu^- \gamma}} \times N_{B_s^0 \to \mu^+ \mu^- \gamma}$ 

#### Risultati

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I} &= (1.34 \pm 1.60 \pm 0.28) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm II} &= (0.76 \pm 3.55 \pm 0.30) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm III} &= (-2.55 \pm 2.25 \pm 0.41) \times 10^{-8}, \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm I, \ with \ \phi \ veto} &= (0.72 \pm 1.56 \pm 0.29) \times 10^{-8}. \end{split}$$

• Dominati dall'incertezza statistica

| $q^2$ bin                                                        | Ι                      | II            | III                    |
|------------------------------------------------------------------|------------------------|---------------|------------------------|
| $q^2 \left[ \text{GeV}^2 / c^4 \right]$                          | $[4  m_{\mu}^2, 2.89]$ | [2.89, 8.29]  | $[15.37, m_{B_s^0}^2]$ |
| $m(\mu^+\mu^-)$ [GeV/ $c^2$ ]                                    | $[2m_{\mu}, 1.70]$     | [1.70, 2.88]  | $[3.92, m_{B_s^0}]$    |
| $10^{10} \times \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) \ [8]$ | $82\pm15$              | $2.54\pm0.34$ | $9.1 \pm 1.1$          |
| Fraction of $B_s^0 \to \mu^+ \mu^- \gamma$                       | 87%                    | 2.7%          | 9.8%                   |



#### 04/04/24

# $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ - Analisi

 $q^2$  bin

 $q^2 \, [\,{
m GeV}^2/c^4\,\,]$ 

 $m(\mu^+\mu^-)$  [GeV/ $c^2$ ]

 $10^{10} \times \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) \ [8]$ 

Fraction of  $B^0_s \to \mu^+ \mu^- \gamma$ 



III

 $[15.37, m_{P0}^2]$ 

 $[3.92, m_{B^0}]$ 

 $9.1 \pm 1.1$ 

9.8%

Π

[2.89, 8.29]

[1.70, 2.88]

 $2.54 \pm 0.34$ 

2.7%

 $[4 m_{\mu}^2, 2.89]$ 

 $[2 m_{\mu}, 1.70]$ 

 $82 \pm 15$ 

87%



- LHCb-PAPER-2023-045 Articolo in preparazione
- $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 5.4 \text{ fb}^{-1}$





### $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ - Conclusioni



$$B(\phi \rightarrow \mu^{+}\mu^{-})/B(\phi \rightarrow e^{+}e^{-})$$

$$E = \frac{\beta_{q^{2}max}^{q^{2}max}}{(p^{2}max)^{q}} \frac{dB(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}$$

$$B = \frac{\beta_{q^{2}max}^{q^{2}max}}{(p^{2}max)^{q}} \frac{dB(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}$$

$$B = \frac{\beta_{q^{2}max}^{q^{2}max}}{(p^{2}max)^{q}} \frac{dB(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}} \frac{dB(H_$$

# INFN $\mathcal{B}(\phi \to \mu^+ \mu^-) / \mathcal{B}(\phi \to e^+ e^-)$ - Analisi

- "Measurement of the branching fraction ratio  $\mathcal{B}(\phi \to \mu^+ \mu^-)/\mathcal{B}(\phi \to e^+ e^-)$  with charm meson decays"
  - [arXiv:2402.01336] sottomesso alla rivista JHEP
  - $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 5.4 \text{ fb}^{-1}$



15

10



K 4(25)

# INFN $\mathcal{B}(\phi \to \mu^+ \mu^-) / \mathcal{B}(\phi \to e^+ e^-)$ - Analisi

- "Measurement of the branching fraction ratio  $\mathcal{B}(\phi \to \mu^+ \mu^-)/\mathcal{B}(\phi \to e^+ e^-)$  with charm meson decays"
  - [arXiv:2402.01336] sottomesso alla rivista JHEP
  - $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 5.4 \text{ fb}^{-1}$
- ► Strategia
  - Test LFU con  $\mu e$  in transizione  $b \to s \ell^+ \ell^-$

$$R_{\phi\pi}^{d(s)} = \beta \cdot \frac{\mathcal{B}(D_{(s)}^{+} \to \phi(\mu^{+}\mu^{-})\pi^{+})}{\mathcal{B}(D_{(s)}^{+} \to \phi(e^{+}e^{-})\pi^{+})} / \frac{\mathcal{B}(B^{+} \to J/\psi(\mu^{+}\mu^{-})K^{+})}{\mathcal{B}(B^{+} \to J/\psi(\mu^{+}\mu^{-})K^{+})} = 1$$

- $\phi \to \ell^+ \ell^-$  dal decadimento  $D^+_{(s)} \to \phi(\ell^+ \ell^-) \pi^+$ 
  - ✓ Controllo basse regioni di  $q^2$
- $B^+ \to J/\psi(\ell^+\ell^-)K^+$  come canale di normalizzazione
- Risultati

 $\begin{aligned} R_{\phi\pi}^{d(s)} &= 1.022 \pm 0.012_{stat.} \pm 0.048_{sist.} \\ \mathcal{B}(\phi \to \mu^+ \mu^-) &= (3.045 \pm 0.049_{stat.} \pm 0.148_{sist.}) \times 10^{-4} \end{aligned}$ 

- Primo test di LFU nei decadimenti di mesoni  $\phi$
- Ad oggi la misura più precisa su  $\mathcal{B}(\phi \to \mu^+ \mu^-)$





- ►  $B^0 \to K^{*0} \mu^+ \mu^-$  è una transizione  $b \to s \ell^+ \ell^-$ 
  - Descrizione EFT con diversi coefficienti di Wilson  $\mathcal{C}$







 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ 







- ► "Comprehensive analysis of local and nonlocal amplitudes in the  $B^0 \rightarrow K^{*0} \mu^+ \mu^- decay$ "
  - LHCb-PAPER-2024-011 Articolo in preparazione
  - $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 8.4 \text{ fb}^{-1}$
- ► Strategia:
  - Analisi "unbinned" e "model-dependent"



 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  - Analisi



 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  - Analisi

✓ Analisi contributi locali e non-locali

## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ - Risultati



#### Misure dei coefficienti di Wilson

| $\mathcal{C}_9$       | $3.56 \pm 0.28 \pm 0.18$  | $2.1\sigma$ |
|-----------------------|---------------------------|-------------|
| $\mathcal{C}_{10}$    | $-4.02 \pm 0.18 \pm 0.16$ | $0.6\sigma$ |
| $\mathcal{C}_9'$      | $0.28 \pm 0.41 \pm 0.12$  | $0.7\sigma$ |
| $\mathcal{C}'_{10}$   | $-0.09 \pm 0.21 \pm 0.06$ | $0.4\sigma$ |
| $\mathcal{C}_9^{	au}$ | $-116\pm264\pm98$         | $0.4\sigma$ |

- Deviazione globale dal Modello Standard  $\sim 1.5\sigma$ 
  - $\checkmark$  In accordo con le precedenti analisi
- Deviazione per  $C_9 \sim 2.1\sigma$ 
  - $\checkmark \quad \varDelta C_9^{NP} = -0.71$
- Prima misura di  $C_9^{\tau}$



## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ - Risultati



#### Misure dei coefficienti di Wilson

| $\mathcal{C}_9$             | $3.56 \pm 0.28 \pm 0.18$  | $2.1\sigma$  |
|-----------------------------|---------------------------|--------------|
| $\mathcal{C}_{10}$          | $-4.02 \pm 0.18 \pm 0.16$ | 0.6 <i>o</i> |
| $\mathcal{C}_9'$            | $0.28 \pm 0.41 \pm 0.12$  | $0.7\sigma$  |
| $\mathcal{C}_{10}^{\prime}$ | $-0.09 \pm 0.21 \pm 0.06$ | $0.4\sigma$  |
| $\mathcal{C}_9^{	au}$       | $-116\pm264\pm98$         | $0.4\sigma$  |

- Deviazione globale dal Modello Standard ~1.5σ
   ✓ In accordo con le precedenti analisi
- Deviazione per  $C_9 \sim 2.1\sigma$ 
  - $\checkmark \quad \varDelta C_9^{NP} = -0.71$
- Prima misura di  $C_9^{\tau}$
- Ampiezze non-locali

- Influenza dei contributi sulle misure angolari ...
- ... non dominante







- Sono stati presentati risulati recenti per i decadimenti rari ed estremamente rari a LHCb
  - $J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  Ad oggi la misura più precisa su  $\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-)$

 $\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = (1.13 \pm 0.10_{stat.} \pm 0.05_{sist.} \pm 0.01_{est.}) \times 10^{-6}$ 

•  $B_s^0 \rightarrow \mu^+ \mu^- \gamma$  - Primo limite con ricostruzione completa dello stato finale

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\text{comb.}} < 2.5 \, (2.8) \times 10^{-8}$ 

•  $\mathcal{B}(\phi \to \mu^+ \mu^-) / \mathcal{B}(\phi \to e^+ e^-)$  - Primo test di LFU nei decadimenti di mesoni  $\phi$ 

$$\begin{split} R_{\phi\pi} &= 1.022 \pm 0.012_{stat.} \pm 0.048_{sist.} \\ \mathcal{B}(\phi \to \mu^+ \mu^-) &= (3.045 \pm 0.049_{stat.} \pm 0.148_{sist.}) \times 10^{-4} \end{split}$$

•  $B^0 \to K^{*0} \mu^+ \mu^-$  - Analisi angolare con misura dei coefficienti di Wilson

| $\mathcal{C}_9$       | $3.56 \pm 0.28 \pm 0.18$  | $2.1\sigma$ |
|-----------------------|---------------------------|-------------|
| $\mathcal{C}_{10}$    | $-4.02 \pm 0.18 \pm 0.16$ | $0.6\sigma$ |
| $\mathcal{C}_9'$      | $0.28 \pm 0.41 \pm 0.12$  | $0.7\sigma$ |
| $\mathcal{C}'_{10}$   | $-0.09 \pm 0.21 \pm 0.06$ | $0.4\sigma$ |
| $\mathcal{C}_9^{	au}$ | $-116\pm264\pm98$         | $0.4\sigma$ |





# A nome della collaborazione LHCb vi ringrazio per la vostra attenzione