Giovanni Gaudino (per la collaborazione Belle II Italia)

Prima evidenza del canale $B^+ \rightarrow K^+ v \overline{v}$ e risultati recenti di Belle e Belle II sui decadimenti radiativi del B

IFAE 2024 – Firenze - 04/04/2024

Belle II e SuperKEKB

$B^+ o K^+ u \overline{ u}$

Motivazioni e Stato dell'arte

 $B \rightarrow K \nu \overline{\nu}$: processo con corrente neutra e cambio di sapore di quark, u,c,tsoppresso dal Modello Standard W $BR(B^+ \to K^+ \nu \overline{\nu})_{MS} = (5.6 \pm 0.4) \times 10^{-6} (*)$ [PRD 107,014511 (2023)] Sensibile a scenari di nuova fisica [1][2][3] Average Ricerca sperimentalmente impeqnativa (solo ai collisori e^+e^-): $SM_{0.46 \pm 0.05}$ 1.1 ± 0.4 Basso rapporto di decadimento Belle II (63 fb^{-1} , Inclusive) $1.9^{+1.6}_{-1.5}$ PRL127, 181802 2 neutrini nello stato finale Belle (711 fb^{-1} , SL) _{1.0 \pm 0.6 PRD96, 091101} Non c'è stata evidenza sperimentale nelle ricerche precedenti Belle (711 fb^{-1} , Had) $_{3.0\pm1.6}$ (711 fb^{-1} , Had) Metodo con taq inclusivo applicato per la prima volta a Belle II Babar (429 fb⁻¹, Had+SL) _{0.8 \pm 0.7 PRD87, 112005} 8 10 0 6 $BR(B^+ \rightarrow K \nu \overline{\nu}) \times 10^5$ Giovanni Gaudino

04/04/2024 (*) Incertezza dominata da Fattori di Forma adronica

Ricostruzione del canale

In questa presentazione parlerò più dettagliatamente di ITA e mosterò i risultati delle due.

04/04/2024

Ricostruzione e preselezione

Miglior candidato
$$K$$
 di segnale $\leftrightarrow q_{rec}^2$ più basso:
 $q_{rec}^2 = \frac{s}{4c^4} + M_K^2 - \frac{\sqrt{s}E_K^*}{c^4} - \varepsilon = 96\%$

Preselezione basata principalmente su:

- Energia totale dell'evento e molteplicità di tracce
- Momento mancante

Maggiore fondo residuo: $q\overline{q}$

Per poter sopprimere il fondo vengono utilizzate due BDT in cascata (miglioramento nella sensibilità di un fattore 3 rispetto a singola BDT)

 Input: Variabili legate a cinematica, energia mancante, vertici e alla forma dell'evento

Regione di segnale: Efficienza Totale 8% – Purezza attesa 0.8%

Giovanni Gaudino

Strategia per l'estrazione di segnale

• Parametro di interesse:

 $\mu = B_{mis}/B_{MS,corto\,raggio}(*)$

- Fit di massima verosimiglianza alla distribuzione di uscita della seconda BDT (BDT₂) e q²_{rec}
- Nel fit finale si tiene poi conto delle sistematiche attraverso parametri di «nuisance»
- Utilizzo dei **campioni di controllo** per correggere e validare il MC

$$04/04/2024$$
 (*) $B_{MS,corto\,raggio} = 4.97 \times 10^{-6}$

Validazione: Efficienza di segnale

- Canale di controllo $B^+ \to J/\psi(\mu\mu)K^+$:
 - Procedura di "embedding": rimuovere i muoni dalla ricostruzione per simulare i neutrini e sostituire la cinematica del K⁺ dagli eventi segnale simulati per avere la topologia del segnale (sia nei dati che nel MC).
- Rapporto di efficienza dati/MC: 1.00 ± 0.03
- Il 3% è incluso come incertezza sistematica sull'efficienza di segnale.

04/04/2024

Validazione dei fondi residui

- Dati raccolti 60 MeV sotto la Y(4S), per validare la normalizzazione e le proprietà del fondo continuo.
- Fondo più abbondante da decadimenti **semileptonici**
 - Risonanze **ben riprodotte**, sistematiche legate alla conoscenza dei Rapporti di Decadimento

- Fondi più simili al segnale (**stati finali con K_L**):
 - Modellazione **dell'efficienza dei** K_L nel calorimetro usando il canale $e^+e^- \rightarrow \phi(\rightarrow K_S K_L)\gamma$
 - **Correzione del fondo** da $B \rightarrow KK_LK_L$ usando $B \rightarrow KK_SK_S$
 - Contributo di $B \rightarrow X_c(K_L X)K$ corretto usando un campione con K id invertita (ricco di π).

Normalizzazione dei fondi e **modellazione** di $B \rightarrow KK_LK_L$: sistematiche **principali** assieme alla statistica del MC

Validazione: misura di un altro canale

Come ultimo check, abbiamo **misurato il Rapporto di decadimento** del canale noto e raro $B^+ \rightarrow \pi^+ K^0$ adattando leggermente l'analisi inclusiva

- Richiesta di π –id, piuttosto che K–id
- Diversa scelta degli intervalli di q_{rec}^2 per massimizzare la sensibilità Risultato:

$$BR(B^+ \to \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$$

$$BR_{PDG} = (2.38 \pm 0.08) \times 10^{-5}$$

Giovanni Gaudino

04/04/2024

Risultato Combinato

04/04/2024

Ricerca di nuova fisica in decadimenti radiativi del B

$B \to K^* \gamma$

•
$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\overline{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$

•
$$\Delta A_{CP} = A_{CP}(B^0) - A_{CP}(B^+)$$

•
$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

• $M_{bc}^2 = E_{beam}^2 - p_B^2$ • $\Delta E = E_B - E_{beam}$ Analisi multivariata per eliminare i fotoni di fondo. Fit 2D per estrarre il numero di eventi. A_{CP} e A_I sono molto puliti teoricamente

Belle ha osservato una **evidenza di violazione di isospin** a 3.1σ

$$\mathcal{B}[B^0 \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5},$$

$$\mathcal{B}[B^+ \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5},$$

$$\mathcal{A}_{CP}[B^0 \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%,$$

$$\mathcal{A}_{CP}[B^+ \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%,$$

$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%, \text{ and}$$

$$\Delta_{0+} = (5.1 \pm 2.0 \pm 1.5)\%,$$

- Consistente con la media del PDG
- Sensibilità simile a Belle dovuta ad un miglioramento dell'efficienza dei K_S e alla risoluzione di Δ E 04/04/2024 Giovanni Gaudino

$B \rightarrow \gamma \gamma$

04/04/2024

Decadimento molto raro con $B_{SM} = (1.4^{+1.4}_{-1.8}) \times 10^{-8}$ Stato finale con 2 fotoni: grande background Misura più precisa BaBar: $BR < 3.2 \times 10^{-7}$

	$\mathcal{B}(B^0 o \gamma \gamma)$	$\mathcal{B}(B^0 o \gamma \gamma)$
		(at 90% CL)
Belle	$(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$	$< 9.9 \times 10^{-8}$
Belle II	$(1.7^{+3.7}_{-2.4} \pm 0.3) \times 10^{-8}$	$< 7.4 \times 10^{-8}$
Combined	$(3.7^{+2.2}_{-1.8} \pm 0.7) \times 10^{-8}$	$< 6.4 \times 10^{-8}$

- Osservata significatività di 1.2σ più alta di quella prevista
- Significatività totale: 2.5σ

C'è stato un miglioramento di un **fattore 5** rispetto al precedente **limite superiore** (migliore risoluzione di ΔE)

Giovanni Gaudino

Conclusioni

- I decadimenti elettrodeboli e pinguini radiativi sono promettenti per studiare eventuali canali di nuova fisica
- **3 nuovi** risultati presentati:
 - Prima evidenza del canale $B \to K \nu \overline{\nu}$
 - Miglior limite superiore di Belle+Belle II nel canale $B^0 \rightarrow \gamma \gamma$
 - Nuove misure di Rapporti di Decadimento, A_{CP} , ΔA_{CP} e Δ_{0+} nel canale $B^0 \rightarrow K^* \gamma$
- Risultati ancora limitati dalla statistica. La seconda presa dati di Belle II è **appena iniziata**.

Grazie per l'attenzione

Backup

Referenze Bibliografiche

- [1]: <u>PRD 98, 055003 (2018)</u>
- [2]: PRD 102, 015023 (2020)
- [3]: PRD 101, 095006 (2020)

Pinguini elettrodeboli e radiativi

Le correnti neutre con cambio di sapore non sono possibili a **livello albero** nel Modello Standard.

 I Rapporti di Decadimento predetti sono nell'ordine 10⁻⁷–10⁻⁴ con un'incertezza teorica dominata da effetti di QCD soffice dell'ordine di 5–30%.

I decadimenti di questo tipo sono molto sensibili a potenziali contributi non Modello Standard sia in diagrammi al secondo ordine che a livello albero

Backup

Risultati

 $\mu = 5.6 \pm 1.1 (stat.) {}^{+1.1}_{-0.9} (sys.)$ Significatività dell'eccesso **3.50 2.90** di deviazione dal MS

Sistematiche Principali:

- La normalizzazione nel fondo *BB*
- Il limite statistico della simulazione

 $\mu = 2.2 \pm 2.3 \text{ (stat.)} ^{+1.6}_{-0.7} \text{ (sys.)}$ Significatività dell'eccesso **1.1** σ **0.6** σ di deviazione dal MS

04/04/2024

$B ightarrow ho \gamma$

- Il maggiore fondo dopo il continuo è $B \rightarrow K^* \gamma$ (dove il K viene mis-identificato con un π)
- Fit 3D simultaneo con i dati di Belle+Belle II.
- Fit su M_{bc} , ΔE e $M_{K\pi}$

Belle II

$$\mathcal{B} \left(B^+ \to \rho^+ \gamma \right) = \left(13.1^{+2.0+1.3}_{-1.9-1.2} \right) \times 10^{-7},$$

$$\mathcal{B} \left(B^0 \to \rho^0 \gamma \right) = \left(7.5 \pm 1.3^{+1.0}_{-0.8} \right) \times 10^{-7},$$

$$A_{\rm CP} \left(B^+ \to \rho^+ \gamma \right) = \left(-8.2 \pm 15.2^{+1.6}_{-1.2} \right) \%,$$

$$A_{\rm I} \left(B \to \rho \gamma \right) = \left(10.9^{+11.2+6.8+3.8}_{-11.7-6.2-3.9} \right) \%,$$

Misura più precisa attualmente

04/04/2024

Belle

Decadimenti radiativi

04/04/2024

Decadimenti radiativi

- **Ricostruzione completa** del decadimento in esame del mesone *B*:
- **Ricostruzione General** $M_{bc}^2 = E_{beam}^2 p_B^2$ $\Delta E = E_B E_{beam}$ **Analisi multivariata** per eliminare i fotoni di fondo: Fotoni provienienti da decadimenti asimmetrici del π^0/η e fotoni provenienti dal continuo $q\overline{q}$
- Validazione del Monte Carlo usando campioni di controllo di altri eventi radiativi.
- Per estrarre il **numero di eventi** di segnale dai dati si effettua un fit su variabili cinematiche e/o discriminatori multivariati
- Dal numero di eventi si può estrarre sia il Rapporto di Decadimento che le asimmetrie legate a CP e all'Isospin

Validazione: Studi sul fondo continuo

Miglioriamo l'accuratezza della simulazione MC correggendo i pesi degli eventi con un'analisi multivariata (MVA) per identificare e correggere le differenze tra dati e MC.

La shape viene corretta evento per evento, allenando una BDT con i dati off-resonance contro il Montecarlo $q\overline{q}$. [J. Phys.: Conf. Ser. 368 012028] Il peso sarà dato dall'output della BDT *w*, seguendo la formula: *W*

$$1-w$$

Ricostruzione e preselezione

ITA:

- 1. Candidato K: $\varepsilon(K_{ID}) = 68\% P(true = \pi | cand = K) = 1.2\%$
- 2. Tra i vari candidati per evento, si seleziona il candidato si segnale K con il q_{rec}^2 più basso:

$$q_{rec}^2 = \frac{s}{4c^4} + M_K^2 + \frac{\sqrt{s}E_K^*}{c^4} - P(\text{true} = K|cand_{best} = K) = 96\%$$

HTA:

- Si seleziona il B_{tag} con soli decadimenti adronici (35 diversi flag). L'algoritmo è basato su una serie di analisi multivariate (Full Event Interpretation [Comp.Soft.BigSci. 3, 6 (2019)]). L'efficienza è circa 100 volte più bassa rispetto a ITA.
- 2. Il resto della ricostruzione è **uguale** all'Inclusive Tag Analysis.
- 3. Infine, si richiedono **0 tracce** nel resto dell'evento.

Sottrazione del fondo

Efficienza Totale 8% – Purezza attesa 0.8%

Due BDT a cascata:

- BDT1 come primo step
- BDT2 come strumento principale della sottrazione. La sensibilità migliora di un fattore 3 rispetto al solo BDT1.

Sottrazione del fondo

La differenza principale tra un evento $B\overline{B}$ e un evento $q\overline{q}$ è la distribuzione delle tracce.

Per sfruttare tutte le variabili globali di evento, vengono inserite quelle più discriminanti e con un migliore accordo dati/MC in una BDT.

04/04/2024

Giovanni Gaudino

ΒĀ

 $q\bar{q}$

 $B(\rightarrow K\nu\bar{\nu})\bar{B}$

Iter dell'analisi in poche parole

Fatta eccezione del metodo di tag, entrambi gli iter di **HTA** e **ITA** seguono gli stessi step. In questa presentazione parlerò più dettagliatamente di **ITA** e citerò **HTA** per le differenze che ci sono con **ITA**

04/04/2024

Giovanni Gaudino

Backup

Incertezze Sistematiche

Le incertezze sistematiche sono stimate utilizzanto dei nuisance parameter nel fit finale

Le principali fonti di incertezze sistematiche sono legate alla conoscenza che abbiamo riguardanti le simulazioni MC, in particolare:

- La normalizzazione nel fondo $B\overline{B}$
- Il limite statistico della simulazione
- La conoscenza del Branching Ratio $B^+ \rightarrow K^+ K_L K_L$ e il modello dei decadimenti $B \rightarrow D^{**} \ell \nu$.
- (solo **HTA**) Mis-modelling della molteplicità dei fotoni extra (non ben ricostruiti dal MC)

Source	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background	50%	0.88
Normalization of continuum background	50%	0.10
Leading B -decay branching fractions	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	20%	0.49
p-wave component for $B^+ \to K^+ K_{\rm s}^0 K_{\rm L}^0$	30%	0.02
Branching fraction for $B \to D^{**}$	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	100%	0.20
Branching fraction for $D \to K^0_{\rm L} X$	10%	0.14
Continuum-background modeling, BDT_c	100% of correction	0.01
Integrated luminosity	1%	< 0.01
Number of $B\bar{B}$	1.5%	0.02
Off-resonance sample normalization	5%	0.05
Track-finding efficiency	0.3%	0.20
Signal-kaon PID	O(1%)	0.07
Photon energy	0.5%	0.08
Hadronic energy	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	8%	0.21
Signal SM form-factors	O(1%)	0.02
Global signal efficiency	3%	0.03
Simulated-sample size	O(1%)	0.52

Implicazioni della misura

L'universalità leptonica di sapore (rosso) non interseca la banda gialla (risultato di Belle II) sotto la banda grigia (90% di livello di confidenza)

Molti articoli sono stati scritti dopo la misura di Belle di questo canale.

Motivazioni e strategia dell'analisi

- Le asimmetrie $CP(A_{CP})$ e di isospin Δ_{+0} sono teoricamente molto pulite data la cancellazione dei fattori di forma grazie al rapporto
- L'ultima misura di Belle ha trovato un'evidenza di asimmetria di isospin a 3.1σ [Phys. Rev. Lett. 119,191802 (2017)]

- Si ricostruiscono 4 canali di decadimento del $K^*(K^+\pi^-, K_S\pi^0, K^+\pi^0, K_S\pi^+)$.
- 2 MVA per eliminare il fondo dovuto ai decadimenti con fotoni asimmetrici da π^0 e η , e anche fondo legato ad eventi di continuo $q\overline{q}$.
- 2D $M_{bc} \Delta E$ fit per estrarre simultaneamente il numero di eventi di B e \overline{B} . Per il rapporto di decadimento, si usa il numero di eventi $B \rightarrow K_S \pi^0$.
- L'obiettivo finale è di misurare contemporaneamente il numero di eventi (quindi il rapporto di decadimento), A_{CP} e Δ_{+0}

Motivazioni e strategia dell'analisi

- Osservato precedentemente da Belle [Phys.Rev.Lett.101:111801,2008] e da BaBar [Phys.Rev.D78:112001,2008]
- Una tensione di circa 2 σ tra la media mondiale attuale $A_I = (30^{+16}_{-13}\%)$ e lo SM: (5.2 ± 2.8) % [Lyon, Zwicky '13]

$$A_{\rm CP}(B \to \rho\gamma) = \frac{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) - \Gamma\left(B \to \rho\gamma\right)}{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) + \Gamma\left(B \to \rho\gamma\right)}$$
$$A_{\rm I} = \frac{2\Gamma(\overset{(-)}{B^0} \to \rho^0\gamma) - \Gamma(B^{\pm} \to \rho^{\pm}\gamma)}{2\Gamma(\overset{(-)}{B^0} \to \rho^0\gamma) + \Gamma(B^{\pm} \to \rho^{\pm}\gamma)}$$

- $A_{\rm I} = \frac{1}{2\Gamma(B^0 \to \rho^0 \gamma) + \Gamma(B^\pm \to \rho^\pm \gamma)}$ Il maggiore fondo è legato al continuo $q\overline{q}$, con fotoni provenienti da un π^0/η con fotoni asimmetrici
- Si allenano 2 classificatori MVA per eliminare i fondi principali legato al π^0 e η 04/04/2024

Si vuole misurare $A_{CP}, A_I \in BR(B^{\pm,0} \to \rho^{\pm,0}\gamma)$ usando i dati di Belle + Belle II (1.07 /ab)

Motivazioni e strategia dell'analisi

• Per ricostruire $B^0 \rightarrow \gamma \gamma$, si combinano due fotoni che hanno colpito la parte centrale del calorimetro ($32.2^\circ < \theta < 128.7^\circ$)

- 2 classificatori MVA per sottrarre fotoni provenienti da π^0/η e eventi di fondo continuo $q \overline{q}$
- Si usa il canale $B \to K^* (\to K^+ \pi^-) \gamma$ come campione di controllo per calcolare correzioni di efficienza dati/MC.
- Fit Simultaneo con massima verosimiglianza ad M_{bc} , ΔE e alla BDT con dati di Belle+BelleII.