Incontri di Fisica delle Alte Energie (IFAE) 3-5 Aprile 2024

Performance of the first Monolithic Active Pixel Sensor (MAPS) based space tracker on board the second China Seismo-Electromagnetic Satellite (CSES)

DI TORINO

Stefania Perciballi* on behalf of the Limadou Collaboration *Università di Torino, stefania.perciballi@unito.it

CSES e il High Energy Particle Detector (HEPD)

CSES-02 ha come obiettivo:

利瑪竇

LIMADOU

- Misurare le perturbazioni tra la ionosfera e la magnetosfera terrestre
- Monitorare le condizioni elettromagnetiche vicino alla terra
- Studiare i flussi di particelle cariche di bassa e alta energia provenienti dalle fasce di Van Allen interne

CSES-02 ha 9 strumenti, di cui 2 sono realizzati in Italia:

Focus su **HEPD-02** che ha come SCOPO:

- Misurare elettroni (3MeV-100MeV)
 - Misurare protoni (30MeV-200MeV)

HEPD-02 è composto da:

- 2 piani di trigger
- Primo tracciatore basato su MAPS
- Calorimetro
 - \rightarrow 12 piani di scintillatori plastici
 - \rightarrow 9 barre di scintillatori di LYSO

- chip scan \rightarrow read/write dei registri: output chip ID
- digital scan \rightarrow controllo tramite scan digitale
- threshold scan \rightarrow iniezione di carica per determinare la soglia

Threshold tuning:

scan dei parametri del front-end per equalizzare le soglie

Consumo di potenza degli STAVE

	BRONZE	SILVER	GOLD	GOLD spare
AVDD [mA]	124 ± 1	124 ± 2	125 ± 5	112 ± 2
DVDD [mA]	466 ± 6	460 ± 21	451 ± 11	421 ± 10

Monolithic Active Pixel Sensors (MAPS)

Sensori ALTAI sviluppati nel contesto di ALICE e in cui l'elettronica e il sensore sono implementati sullo stesso wafer di silicio

• Dimensioni del pixel: 26.88 x 29.24 µm² Parameter Values • Colonne x righe: 1024 x 512 Detector size [mm²] 15 x 30 Diametro dell'elettrodo: 2 μm Detector thickness [µm] 50 - 100 • Fonderia: Tower Semiconductors Spatial resolution [µm] 4

Test di termo vuoto e test vibrazionali

- Test Vibrazionali
 - vibrazioni sinusoidali e random
 - **Shock test** (solo per il QM)
- Test di termo vuoto
 - Cicli di temperatura da 318 a 253 K •
 - Pressione a valore nominale $\leq 6.65 \times 10^{-3}$ Pa
 - QM: 25.5 cicli termici, 6.5 termo vuoto

- FM: 14.5 cicli termicicicli termici, 3.5 termo vuoto
- **Test result: passed**

Soglia dei sensori in funzione della temperatura

- Stave testato all'interno di una camera climatica
- Range di temperatura [263 a 323] K (richiesta [303 a 313] K)
- Variazioni della soglia di 60 e⁻ su un Δ T di $60 \text{ K} \rightarrow 1 \text{ e}^{-}/\text{K}$
- La disperzione delle soglie in ogni chip è di 20 e-
- Più alto è il reverse bias minore è l'influenza della temperatura sulla soglia

Assemblaggio del tracciatore

- I sensori ATAI vengono allineati con una macchina di misura (CMM)
- Incollati su un circuito flessibile stampato (FPC)

• Connessi tramite wire bonding al circuito stampato

			11.4			Cluster size		Inela	Cluster size - theta
10 ALTAI allineati e incollati sull'FPC	HIC	CP	A qu si e te	uesto punto eseguono i st elettrici	10 ⁻¹ static tor tor 10 ⁻² tor 10 ⁻³	Preliminar	10000 - 8000 - \$10000 - \$1000000000 - \$100000 - \$100000 -	4.5 S.0 4.5 4.0 Sig Sig 3.5	Preliminary .
Torretta realizzata da	Production	Trac reali - veld	ciatore complete izzato in 2 copie Qualification M - Flight Mode	o, : lodel (QM) el (FM)	ව 10 ⁻⁴ 10 ⁻⁵	Layer = 0		Layer = 1	Layer = 2
3 STAVE	Quality TAG *	HIC assembly + bonding	HIC post Tab/Wings cut	Stave Assembly		150 - 125 -	150 - 125 -	150 - 125 -	
	GOLD	40%	44%	56%		<u>المعامة المعامة المعامة</u>	- 10 ¹		
	SILVER	15%	15%	5%		∑ 75]			
	BRONZE	12%	23%	10%		50 -		50 - 25 -	
	NOT OK	34%	19%	29%					
	Total:	68	48	41		0 20 40 60 80 100 1 x [mm]	20 140 160 10°	0 20 40 60 80 100 120 140 160 x [mm]	0 20 40 60 80 100 120 14 x [mm]
		* quality	categories based on funct	cional performance					