Sviluppo di un'analisi multivariata per lo studio della produzione di un bosone W in associazione a 2 b-jets con l'esperimento ATLAS ad LHC

Atena Harareh¹, Evelin Meoni^{1,2}

1. Università della Calabria

2. INFN Cosenza

1. Motivazioni e stato dell'arte

- Misure di W/Z+b-jets ad LHC cruciali per:
- Comprensione della pQCD alle scale di energia di LHC
- Modellizzazione dei fondi W/Z+b-jet nelle misure di Higgs e in ricerche di nuova fisica
- Comprensione del contenuto dei quark b nelle PDFs del protone
- Misure di W +2b-jets importanti per:
- Comprensione splitting del gluone.
- > stimare uno dei principali fondi per la misura di $WH(H \rightarrow bb)[1]$.

• Misure pubblicate di W+b-jets ad LHC:

sezione d'urto inclusiva di W+2b-jets a 7 e 8 TeV (Run1) a CMS[2,3] ▷ sezioni d'urto differenziali di W+ ≥ 2 jets con ≥ 1 b-jets a 7 TeV (Run 1) a ATLAS[4] Attualmente mancano misure differenziali di W+ 2b-jets ad LHC

• Stato delle simulazioni MC per W/Z+jets:

> MC con NLO Matrix Elements a 2 o 3 partoni extra e modelli di Parton Shower con due possibli schemi: 4FNS (nessun contributo di b-quark nelle PDFs) o 5FNS (b-quark nelle PDFs)

Sfida principale della misura di W+2b-jets ad LHC 13 TeV (Run 2):

Soppressione dell'enorme fondo di coppie di top-quark e anti-quark-top ($t\bar{t} \rightarrow W^+ b W^- \bar{b}$)

Data 300 350 250 400 p[∨]_⊤ [GeV]

2. Il Rivelatore ATLAS

4. Selezione sul numero di jets e b-jets

Selezione sul numero di jet e numero di b-jets	Segnale/(t t +single top)	Segnale/ (Segnale nella regione Geq2BiJ)
≥2b-jets (Geq2BiJ)	(4.9±0.1)%	100%
== 2b-jet & nessun altro jet centrale e/o forward (2B2J)	(26.9±0.2)%	25%
$ \begin{array}{c} \underbrace{3}_{0} \underbrace{50000}_{\text{H}} & \text{ATLAS Work In Progress} \\ \hline & \text{W}(\rightarrow \mu\nu) + 2b \cdot jets \\ \hline & \text{W}(\rightarrow \mu\nu) + 1b \cdot jet \\ \hline & \text{W}(\rightarrow \mu\nu) + 1b \cdot jet \\ \hline & \text{W}(\rightarrow \mu\nu) + c \cdot jet \\ \hline & \text{W}(\rightarrow \mu\nu) + light \cdot jets \\ \hline & \text{W}(\rightarrow \mu\nu) + light \cdot light + light \cdot light + light \cdot light + light $		bork In Progress $W(\rightarrow \mu v)+2b$ -jets $W(\rightarrow \mu v)+1b$ -jet $W(\rightarrow \mu v)+c$ -jet $W(\rightarrow \mu v)+c$ -jet $W(\rightarrow \mu v)+light$ -jets ttbar single top $Z(\rightarrow \mu \mu)+jets$

3. Strategia dell'analisi

. Selezione di W($\rightarrow \mu \nu$)+b-jets:

2. Selezione del numero di jets e b-jets

Efficienza di selezione di b-jets = 70%, reiezione \checkmark di c-jets=12, reiezione di light-jets=600 (stima fatta su campioni MC $t\bar{t}$)[5]

Implementazione di analisi multivariata basata su una rete neurale

W jets $==1\mu$ isolato $p_T > 27 \text{ GeV}$ $|\eta| < 2.5$ che passa il trigger MET(energia asversa mancante >25 GeV

 $M_T(W): >60 \text{ GeV}$

5. Rete Neurale (NN) in 2B2J

NN sviluppata con Keras TensorFLow[6] nella regione 2B2J con 5 osservabili di input, x layers con y nodi ciascuno, z epochs e learning rate

MC del segnale e di $t\bar{t}$ divisi in 3

Transverse Mass Lepton eta (abs) 0.14 **ATLAS** Work in Progress 0.12 ATLAS Work in Progress 0.1 0.08 0.06 0.04 🛏

Fondo di multi-jets mancante, corrispondente a circa 10% del totale, da stimare con tecniche data-driven

6. Performances della NN in 2B2J

Efficienza del reiezione del

fondo

35%

40%

50%

70%

campioni: set di training, set di validazione e set di test.

Ottimizzazione degli iperparametri della rete (x,y,z,k) fatta sulla base della AUC (Area Under Curve) maggiore.

Trovare il miglior set di iperparametri:

Iperparametri	Valori selezionati per l'ottimizzazione	
Layer (x)	[1, 2, 3, 4, 5]	
Nodi (y)	[5, 10, 15, 20, 25]	
Epoch (z)	[80, 100, 180, 250]	
Learning rate (k)	[0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001]	
Migliore AUC	x = 2, y = 15, z = 80, k = 0.001	

(GeV)

7. Approccio alternativo: NN in Geq2BiJ

NN nella regione Geq2BiJ con 11 variabili di input:

8. Conclusioni

1. Il nostro studio introduce un metodo affidabile per identificare i decadimenti del bosone W con i b-jet, riducendo la contaminazione di fondo $t\bar{t}$.

2. Applichiamo una selezione cinematica preliminare seguita da una rete neurale costruita con keras e tensorflow per massimizzare la purezza del segnale.

3. Il prossimo passo prevede: ottimizzare la NN in Geq2BiJ, stabililire il taglio sulla NN per evitare bias delle distribuzioni che vogliamo misurare (lead b-jet p_T , M_{bb} , ΔR_{bb} , $\Delta \phi_{bb}$), confrontare la NN del MC con quella dei dati in una regione di controllo dominata da $t\bar{t}$.

9. Bibliografia

[1] ATLAS Collaboration, "Measurements of WH and ZH production in the $H \rightarrow bb^-$ decay channel in pp collisions at 13TeV with the ATLAS detector.", Eur. Phys. J. C 81 (2021) 178. [2] CMS Collaboration, "Measurement of the Production Cross Sections for a W Boson and and two b jets in pp collisions at \sqrt{s} = 7 TeV", PLB 735 (2014) 204. [3] CMS Collaboration, "Measurement of the Production Cross Section of a W Boson in Association with Two b Jets in pp Collisions at $\sqrt{s}=8$ TeV." Eur. Phys. J. C 77 (2017) 92. [4] ATLAS Collaboration, "Measurement of the cross-section for W boson production in association with b jets in pp collisions at $\sqrt{s}=7$ TeV", JHEP 06, 084 (2013). [5] ATLAS Collaboration, "ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset", Eur. Phys. J. C 83 (2023) 681. [6] Abadi, Martín, et al, "TensorFlow: a System for Large-Scale Machine Learning." 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016.

