

Risultati recenti sulle misure VBS e VBF dell'esperimento CMS

Incontri di Fisica delle Alte Energie

Andrea Claudio Maria Bulla ¹ per la collaborazione CMS

¹ Università e INFN di Cagliari

Introduzione

I processi Vector Boson Scattering (VBS) e Vector Boson Fusion (VBF) accadono quando i due quark iniziali irradiano bosoni vettori che interagiscono tra di loro

- Sono processi rari previsti dallo standard model (~ 10-1000 fb)
- Sono profondamente connessi con EWSSB
- Hanno una ricca fenomenologia
 (TGC, QGC, accoppiamento con h, EFT...)
- Sono caratterizzati da peculiarità cinematiche comuni (|Δη_{jj}|, m_{jj}, Z_x)

$$\Delta Z_X=\eta_X-rac{1}{2}(\eta_{j_1}+\eta_{j_2})$$

 $VBS \rightarrow W^*W^-$ leptonico

"First observation of the electroweak production of a leptonically decaying W+W- pair in association with two jets in √s = 13 TeV pp collisions".

Phys. Lett B 841 (2023) 137495 Regione fiduciale Regione inclusiva Misura: 10.2 ± 2.0 fb LO predizione: 9.1 ± 0.6 fb Misura: 99 ± 20 fb LO predizione: 89 ± 5 fb Objects Requirements $e^+e^-, \mu^+\mu^-, e^+\mu^-, e^-\mu^+$ Ottimo $p_{\mathrm{T}}^{\ell} = p_{\mathrm{T}}^{bare \, \ell} + \sum_{i} p_{\mathrm{T}}^{\gamma_{i}} \text{ if } \Delta R(\ell, \gamma_{i}) < 0.1$ Leptons $p_{T}^{\ell_{1}} > 25 \text{ GeV}, p_{T}^{\ell_{2}} > 13 \text{ GeV}, p_{T}^{\ell_{3}} < 10 \text{ GeV}$ Osservabili accordo con |n| < 2.5parton-level: le predizioni $p_{\rm T}^{\ell\ell} > 30~{\rm GeV},\, m_{\ell\ell} > 50~{\rm GeV}$ $m_{qq} > 100 \text{ GeV}$ $p'_{\tau} > 10 \text{ GeV}$ dello SM! $p_{\rm T}^{j} > 30 {
m ~GeV}, |\eta| < 4.7$ $\Delta R(j,\ell) > 0.4$ Jets At least 2 jets, no b jets i=l,q,v $m_{\rm ii} > 300 {\rm ~GeV}, \Delta \eta_{\rm ii} > 2.5$ $p_{\rm T}^{\rm miss} > 20 {
m GeV}$ $p_{\mathrm{T}}^{\mathrm{miss}}$

 $VBS \rightarrow W^*W^-$ leptonico

Multiboson

- VBS

1500

6

 $Z_{II} \le 1$

DY no PU iets

2000 GeV

Combined binned maximum likelihood fit della distribuzione più discriminante con istogrammi di segnale e fondo

Bins

$VBS \rightarrow W^*W^-$ leptonico

- Analisi statisticamente limitata → Ci si aspetta che possa beneficiare di un maggior dataset con Run III (250 fb⁻¹)
- Futuri sviluppi:
 - Studi di polarizzazione per investigare
 EWSSB e testare modelli di fisica BSM
 - Global fit di operatori EFT di dimensione
 6 per avere una più completa
 comprensione del range di validità dello
 SM (<u>EFT dim6 study (a) LHE</u>)

	Uncertainty source	Impact
Incertezze	QCD-induced W^+W^- normalisation (5.3%
teoriche	$t\bar{t}$ QCD scale	5.1%
	QCD factorisation scale for VBS signal	5.0%
	$t\bar{t}$ normalisation	4.9%
Incertezze legate al b-tagging	b tagging	3.5%
	Prefiring corrections	3.3%
	DY normalisation	2.9%
	Jet energy scale $+$ resolution	2.6%
	p_T^{miss} energy scale	2.4%
	QCD-induced W^+W^- QCD scale	2.1%
	Luminosity	2.1%
	Muon efficiency	2.0%
	Pileup	1.8%
	Electron efficiency	1.5%
	Underlying event	1.3%
	Parton shower	1.0%
	Other	< 1%
Analisi dominata	Total systematic uncertainty	13.1%
da incertezza	Total statistical uncertainty	14.9%
statistica		
	Total uncertainty	19.8%

$VBS \rightarrow WV$ semileptonico

"First evidence for WW/WZ vector boson scattering in the decay channel l**v**qq produced in association with two jets in proton-proton collisions at √s = 13 TeV".

Phys. Lett. B 834 (2022) 137438

$VBS \rightarrow WV$ semileptonico

Regioni spittate a seconda dell'energia dei getti: boosted (R=0.8), resolved (R=0.4)

Anche in questo caso, nelle regioni di segnale si addestrano due DNN per aumentare il potere discriminante

$VBS \rightarrow WV$ semileptonico

- Anche questa analisi è statisticamente limitata → Run III
- Futuri sviluppi:
 - Studi di polarizzazione per investigare
 EWSSB e testare modelli di fisica BSM
 - Global fit di operatori EFT di dimensione
 6. Il canale è un ottimo candidato ed è avvantaggiato dalla maggiore statistica del decadimento adronico

Analisi dominata da incertezza **statistica**

Uncertainty source	$\Delta \mu_{\rm EW}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
b-tagging	0.05
Jet energy scale and resolution	0.04
Integrated luminosity	0.01
Lepton identification	0.01
Boosted V boson identification	0.01
Total	0.06
Theory	
Signal modeling	0.09
Background modeling	0.08
Total	0.12
Total	0.22

 $VBF \rightarrow W$ leptonico

- Misura inclusiva e fiduciale di sezione d'urto per la produzione
 EWK di W utilizzando tutto il dataset di Run II nel canale leptonico
- Misura differenziale di sezione d'urto in funzione di alcune variabili cinematiche chiave:

m_{jj}, $\Delta \boldsymbol{\phi}_{jj}$, $\Delta \eta_{jj}$, pT_j, η_{j} , η_{l} , $\boldsymbol{\phi}_{l}$, pT_l, mT(W), pT(W), ...

• Ricerche indirette di nuova fisica tramite un approccio EFT con operatori di dimensione 6:

in SR:

•

eta1 implemented for both the lepton flavors detaii (70%-30%) dataset from SRs. 60k training, 20k splitted in test & validation. 24% enriched in signal

Architecture: 3 hidden layers with (64,64,64) neurons

To disentangle signal from W+2Jets background

Set of training variables: 8 physical-motivated variables

NFN

1 universal model:

Training samples:

12

 $VBF \rightarrow W$ leptonico

 $rac{\sigma_{exp}}{\sigma_{exp}} = 1.0^{+0.013}_{-0.013}(stat)^{+0.083}_{-0.077}(syst)$

- Grazie ad una maggiore statistica ed a tecniche ML più avanzate, è atteso un miglioramento rispetto all'analisi che sfrutta solo i dati del 2016
- Tutti e tre gli anni ed entrambi i canali leptonici vengono combinati nel fit
- L'analisi è dominata dalle incertezze sistematiche → il maggior contributo proviene dalla QCD scale variation del segnale
- Valutazione di un sample NLO di segnale per ridurre il suo impatto in corso

- Goal: misura differenziale di cross-section in gen bins (in questo caso, p_{T} del leptone)
- Per massimizzare la purezza del segnale, viene sfruttata la DNN → 2D fit del DNN output e della corrispondente variabile reco
- Panifichiamo di fittare anche su variabili legate ai jets (p_{Tj} , η_j , ϕ_j), al sistema di-jet (m_{jj} , $\Delta \phi_{jj}$, $\Delta \eta j j$,), al leptone (p_{Tl} , η_l) e alla W (m_T , p_T)

rispetto ad altre analisi. Verranno effettuati <mark>ulteriori</mark>

Gli operatori boso studi @ reco level

VBF-W [EWK]

± 1σ Expected

Iterval

-1.5

100 fb⁻¹

(13 TeV)

Solo 1 Coefficiente di Wilson è lasciato <mark>libero</mark>, tutti gli altri sono fissati al loro valore <mark>SM</mark> Quad 1.1

$$N \propto |\mathscr{A}_{EFTSM}|^2 = |\mathscr{A}_{SM}|^2 + 2c_i Re(\mathscr{A}_{SM}\mathscr{A}_i^*) + c_i^2 |\mathscr{A}_i|^2$$

Conclusioni

- Presentati alcuni risultati tra i più recenti prodotti (e ongoing) da CMS per analisi VBS e VBF
- Grande partecipazione da parte della comunità italiana nelle analisi presentate
- Sforzo comune e collettivo per una nuova interpretazione di risultati SM, attraverso EFT
- Futura combinazione dei risultati EFT per costringere meglio il più ampio spettro possibile di operatori comuni

Backup

$VBS \rightarrow W^*W^-$ leptonico

ttbar - tW:

σtt ~ 1 nb Maggior fondo dell'analisi. Strategia: b jets veto.

QCD WW:

Interazione forte tra i quark dello stato iniziale. Stesso stato finale ma caratterizzato da una cinematica differente. Strategia: selezioni VBS.

Drell-Yan:

Per lo più presente nel canale SF.

Strategia: selezion sulla massa invariante e sul pT del sistema dileptoni, selezioni più dure su p_T^{miss}.

Non Prompt: Per lo più W+Jet : con un jet mis-identificato come leptone (fake lepton).

 $VBS \rightarrow W^*W^-$ leptonico

Per separare il segnale dai fondi top e QCD-WW:

- Solo per different flavour (DF) final state (eµ);
- 2 modelli implementati, stessa architettura e stesse variabili:
 - \circ Z_{ll} < 1 phase space;
 - \circ $Z_{ll} \ge 1$ phase space.
- Training samples (80%-20%) dataset separati dai test dataset (analysis datasets)
- Architettura: 5 hidden layers con (128,128,64,64,64) neurons
- Set di variabili di training:
 9 variabili con motivazioni fisiche -

	Variable
	m _{ii}
3	$\Delta \eta_{ii}$
	$p_{\mathrm{T}_{i_1}}$
	$p_{T_{j_2}}$
	PTEE
	$\Delta \phi_{\ell\ell}$
	Z_{ℓ_1}
lepton	Z_{ℓ_2}
	m_{TW_1}
]	$ \begin{array}{c} p_{\mathrm{T}\ell\ell} \\ p_{\mathrm{T}\ell\ell} \\ \Delta \phi_{\ell\ell} \\ Z_{\ell_1} \\ Z_{\ell_2} \\ m_{\mathrm{T}W_1} \end{array} $

 $VBS \rightarrow W^*W^-$ leptonico

- In DY CRs sono chiaramente visibili 2 contributi differenti e molto sensibili rispetto alla distribuzione di $\Delta \eta_{ii}$:
 - Ο
 - Gli eventi "Hard" di DY popolano la regione a basso $\Delta \eta_{jj}$ Gli eventi DY in cui c'è almeno 1 PU jet piccano attorno a $\Delta \eta_{jj} \sim 5$ Ο
- 3 contributi totali in regioni di controllo differenti
- La loro normalizzazione è lasciata libera nel fit ed è maggiormente costretta dalle CRs dedicate • $|\Delta \eta_{ii}| \geq 5$ Drell-Yan

 $VBS \rightarrow W^*W^-$ leptonico

Background-signal matrice di correlazione

 $VBS \rightarrow WV$ semileptonico

$VBS \rightarrow WV$ semileptonico

Features

Output

Per separare il segnale da tutti i fondi:

- Solo per different flavour (DF) final state (eµ);
- 2 modelli implementati:
 - Per categorie boosted e resolved
 - Dataset ottenuto da tutti e tre gli anni
- Training samples (80%-20%) dataset separati dai test dataset (analysis datasets)

Boosted

- DNN fully connected (64-32-32-32)
- 13 variabili di input
- 416k eventi di fondo, 50k di segnale

Resolved

• DNN fully connected (64-64-64-64)

 $\boldsymbol{a}_{t} = f(\boldsymbol{W}_{t} \boldsymbol{a}_{t-1} + \boldsymbol{b}_{t})$

...

n hidden layers, m_ℓ units in layer ℓ

- 16 variabili di input
- 1.7 M eventi di fondo, 220k di segnale

Leading VBS tag jet $p_{\rm T}$

Trailing VBS tag jet pT

 $p_{\rm T}$ of the leading V_{had} jet

 $p_{\rm T}$ of the trailing V_{had} jet

Invariant mass of V_{had}

Centrality

 $p_{\rm T}$ of the AK8 V_{had} jet candidate

Zeppenfeld variable for V_{had}

Pseudorapidity interval $\Delta \eta_{ii}^{VBS}$ between tag jets

Quark/gluon discriminator of leading VBS tag jet

Azimuthal angle distance between VBS tag jets

Pseudorapidity difference between V_{had} jets

Quark/gluon discriminator of the leading Vhad jet

Quark/gluon discriminator of the trailing V_{had} jet

Invariant mass of the VBS tag jets pair

NFN

Andrea	Claudio	Maria	Bu

Variable	Resolved Boo		d SHAP ranking		SHAP inte	
	1 71 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20		Resolved	Boosted		
Lepton pseudorapidity	\checkmark	~	13	12		
Lepton transverse momentum	\checkmark	1	16	10	mjj_vbs	
Zeppenfeld variable for the lepton	\checkmark	1	2	2	Zlep	
Number of jets with $p_{\rm T} > 30 {\rm GeV}$	\checkmark	\checkmark	7	3	vjet_0_qgl_res	

6

9

10

14

12

8

3

5

11

15

11

6

8

5

9

13

VBS \rightarrow WV semileptonico

pretation

24

$VBF \rightarrow W$ leptonico

<mark>W+Jets</mark>:

Interazione forte tra quarks dello stato iniziale. Stesso stato finale ma con una cinematica diversa. Strategia: selezioni VBF.

Single (double) top

Single: s & t channel Double: un W che decade leptonicamente Strategia: b jets veto.

Drell-Yan:

Un leptone non ricostruito (o fuori dall accettanza). Strategia: selezioni VBF

Nonprompt:

Per lo più multijet con 1 jet misidentificato come leptone (fake).

$VBF \rightarrow W$ leptonico

Preselezioni comuni:

- p_T^{l1} > 25 GeV
 ma consistenti con le selezioni HLT
- ➤ | η_{l1} | < 2</p>
- ▷ p_T^{l2} < 15 GeV (veto)</p>
- ➤ Almeno 2 jets con p_T > 30 GeV and | **η**_j | < 4.7</p>
- ➤ p_T^{j1} > 40 GeV
- ≻ m_{jj}>400 GeV
- > $|\Delta \eta_{jj}| > 2$

PUWJets fraction: 64%

Signal fraction: 2%

Signal fraction: 20%

L'interferenza tra il segnale puramente EWK signal e il fondo mixed QCD è stata investigata.

In SR @LHE è presente un effetto del ~4%. Attualmente stiamo svolgendo un'ulteriore indagine a livello @reco.

Il sample di interferenza è stato generato con MadGraph5_aMC@NLOCON la seguente sintassi:

generate p p > l+ vl j j / t t~ h QED^2==6 QCD^2==2 add process p p > l- vl~ j j / t t~ h QED^2==6 QCD^2==2

$VBF \rightarrow W$ leptonico

ROC comparison DNN vs m_{ii}

Normalized DNN output

EFT 2D analysis

2 Wilson Coefficients are free to float, all the others are set to their SM value

$$N \propto |\mathscr{A}_{EFTSM}|^{2} = |\mathscr{A}_{SM}|^{2} + \frac{1}{\Lambda^{2}} \sum_{i} 2c_{i}Re(\mathscr{A}_{SM}\mathscr{A}_{i}^{*}) + \frac{1}{\Lambda^{4}} \sum_{i} c_{i}^{2}|\mathscr{A}_{i}|^{2} + \frac{1}{\Lambda^{4}} \sum_{i>j} c_{i}c_{j}Re(\mathscr{A}_{i}\mathscr{A}_{j}^{*})$$

Linear
$$\int \frac{\nabla F - \Psi [EWK]}{\int \frac{1}{2} \int \frac{1}{\sqrt{2}} \int \frac{1$$

NFŃ