

Un più semplice modello di sapore per i neutrini: il revival del gruppo modulare S_3

Matteo Parriciatu (1)(2)

Basato su: JHEP09(2023)043, in collaborazione con D. Meloni (1)(2)

ILLIII

IFAE, Incontri di Fisica delle Alte Energie, Firenze 2024 3–5 Aprile 2024

.............

Paradigma 3ν

 $c_{ij} \equiv \cos \theta_{ij}$, $s_{ij} \equiv \sin \theta_{ij}$ Pontecorvo - Maki - Nakagawa - Sakata

Il puzzle del sapore e il mixing dei neutrini

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i=1}^{3} \sum_{j=1}^{3} U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \exp\left(-i\frac{\Delta m_{ij}^2 L}{2E}\right)$$

Segno determinato da effetto MSW

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre $\Gamma P = 2024$

Il puzzle del sapore e il mixing dei neutrini

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

Il puzzle del sapore e il mixing dei neutrini

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Tre "copie" con masse diverse!

 μ

 $u_{ au}$

Simmetrie discrete non-abeliane?

e

Isidor I. Rabi

F. P. An *et al.*, "Observation of electron-antineutrino disappearance at daya bay," *Phys. Rev. Lett.* **108** (Apr, 2012)

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Le simmetrie di sapore: possibile soluzione?

Problematiche dell'approccio tradizionale

EFT con scalari "flavoni" ϕ_i

$$\mathcal{W}_{Yukawa} \supset \frac{\alpha}{\Lambda} E^{c} (L\phi_{i})_{1} H_{d}$$

$$V(\phi_i) \rightarrow Complicato!$$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

E se cambiamo base? $a, b, c, d \in \mathbb{Z}$

$$\begin{pmatrix} \omega_2'\\ \omega_1' \end{pmatrix} = \gamma \begin{pmatrix} \omega_2\\ \omega_1 \end{pmatrix} \equiv \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} \omega_2\\ \omega_1 \end{pmatrix}$$
$$\gamma \in SL(2,\mathbb{Z}) \equiv \text{Gruppo modulare} \equiv \Gamma$$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

$$\int d^4x \, d^6y \, \mathscr{L}_{10D} \implies \int d^4x \, \mathscr{L}_{EFT}$$

Cosa è una forma modulare? Y(au)

•
$$Y(\gamma(\tau)) = (c\tau + d)^k Y(\tau)$$

Olomorfa in: $\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0\}$

$$c, d \in \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \gamma$$
$$a, b, c, d \in \mathbb{Z} \quad , \quad ad - bc = 1$$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

Come trasformano i supercampi

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

$$\blacktriangleright \mathcal{W}(\Phi) = \sum (Y_{I_1...I_n}(\tau) \varphi^{(I_1)} ... \varphi^{(I_n)})_{\mathbf{1}}$$

 $\mathscr{W}(\Phi)$ è invariante modulare se:

$$\begin{cases} \rho \otimes \rho_{I_1} \otimes \rho_{I_2} \dots \otimes \rho_{I_n} \supset \mathbf{1} & \longrightarrow & \text{Usuale} \\ k_Y = k_{I_1} + k_{I_2} + \dots + k_{I_n} & \longrightarrow & \text{Novità} \end{cases}$$

$$Y_{I_1...I_n}(\tau) \to (c\tau + d)^{k_Y} \rho(\gamma) Y_{I_1...I_n}(\tau)$$

Yukawa: forme modulari di peso k_{Y}

 $\varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)}$

Supercampi di cariche modulari $-k_I$

$$(c\tau + d)^{k_{Y}}(c\tau + d)^{-\sum k_{I_{n}}} = 1$$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre ~~ IFAE ~2 \bigcirc 24

Rottura della simmetria

Matrici di massa dei leptoni

$$\mathsf{M}_{e} \sim \sum_{i} \alpha_{i} \begin{pmatrix} f_{11}(\tau) & f_{12}(\tau) & \dots \\ \dots & \dots & \dots \\ \dots & \dots & f_{33}(\tau) \end{pmatrix}$$

 $f_{ij} \equiv$ funzioni pre-determinate di τ

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

Gruppi modulari finiti: la ricerca della semplicità

Una base per le forme modulari di peso k

$$\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$$
Funzione eta di Dedekind $(q \equiv e^{2\pi i \tau})$
Funzione eta di Dedekind $(q \equiv e^{2\pi i \tau})$
Peso più basso: k=2
$$\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}_2 \rightarrow (c\tau + d)^2 \rho(\gamma)_2 \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}_2$$
Un numero molto limitato!
$$\boxed{N \quad d_k(\Gamma(N)) \quad \Gamma_N} \\ 2 \quad k/2+1 \quad S_3$$
 $1' \otimes 1' = 1 \quad , \quad 1' \otimes 2 = 2 \quad , \quad 2 \otimes 2 = 1 \oplus 1' \oplus 2$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

I principi guida

$$Y_{1}(\tau) = \frac{7}{100} + \frac{42}{25}q + \frac{42}{25}q^{2} + \frac{168}{25}q^{3} + \dots$$

$$Y_{2}(\tau) = \frac{14\sqrt{3}}{25}q^{1/2}(1 + 4q + 6q^{2} + \dots)$$

$$Im \tau \gtrsim 1$$
Sviluppo di Fourier $(q \equiv e^{2\pi i \tau})$

$$D_{\ell} \equiv \begin{pmatrix} \text{elettrone} \\ \text{muone} \end{pmatrix} \sim 2 \qquad \qquad \ell_3 \equiv \text{tau} \sim 1'$$

		E_1^c	E_2^c	E_3^c	D_ℓ	ℓ_3	$H_{d,u}$
	$SU(2)_L \times U(1)_Y$	(1, +1)	(1, +1)	(1, +1)	(2, -1/2)	(2, -1/2)	$(2, \mp 1/2)$
Irreps	$\Gamma_2 \cong S_3$	1	1′	1′	2	1′	1
Pesi	k_I	4	0	-2	2	2	0

Leptoni carichi

$$\mathcal{W}_{e}^{H} = \alpha E_{1}^{c} H_{d} (D_{\ell} Y_{2}^{(3)})_{1} + \beta E_{2}^{c} H_{d} (D_{\ell} Y_{2})_{1'} + \gamma E_{3}^{c} H_{d} \ell_{3} + \alpha_{D} E_{1}^{c} H_{d} \ell_{3} Y_{1'}^{(3)}$$

$$(m_{\tau}, m_{\mu}, m_{e}) \sim m_{\tau} (1, |Y_{1}|, |Y_{1}^{3}|) \qquad |Y_{1}| \sim \mathcal{O}(10^{-2})$$

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFAE 2024

Neutrini di Majorana da operatori di Weinberg

$$\mathcal{W}_{\nu}^{k_{\ell}=2} \supset \frac{g}{\Lambda} H_{u} H_{u} (D_{\ell} D_{\ell})_{2} Y_{2}^{(2)} + \frac{g'}{\Lambda} H_{u} H_{u} D_{\ell} \ell_{3} (Y_{2}^{(2)}) + \\ + \frac{g''}{\Lambda} H_{u} H_{u} (D_{\ell} D_{\ell})_{1} Y_{1}^{(2)} + \frac{g_{p}}{\Lambda} H_{u} H_{u} \ell_{3} \ell_{3} (Y_{1}^{(2)}) .$$

- $\blacktriangleright \Lambda \rightarrow Scala di nuova Fisica$
- ► $\{g'/g, g''/g, g_p/g\} \in \mathbb{R}$ parametri liberi adimensionali

JHEP 09 (2023) 043 D. Meloni, M.Parriciatu

IFAE 2©24

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Il "revival" di S_3 : risultati numerici

Fit VS 6 osservabili adimensionali (no CP) $q_i = \{\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}, m_e/m_\mu, m_\mu/m_\tau, r\}$

	Parameter	Best-fit value and 1σ range			
า	$\Delta m_{\rm sol}^2/(10^{-5}~{\rm eV}^2)$	$7.36\substack{+0.16 \\ -0.15}$			
}		NO	ΙΟ		
	$ \Delta m_{\rm atm}^2 /(10^{-3}~{\rm eV}^2)$	$2.485\substack{+0.023\\-0.031}$	$2.455\substack{+0.030\\-0.025}$		
	$r\equiv \Delta m_{ m sol}^2/ \Delta m_{ m atm}^2 $	0.0296 ± 0.0008	0.0299 ± 0.0008		
	$\sin^2 heta_{12}$	$0.303\substack{+0.013\\-0.013}$	$0.303\substack{+0.013\\-0.013}$		
	$\sin^2 heta_{13}$	$0.0223\substack{+0.0007\\-0.0006}$	$0.0223\substack{+0.0006\\-0.0006}$		
	$\sin^2 heta_{23}$	$0.455\substack{+0.018\\-0.015}$	$0.569\substack{+0.013\\-0.021}$		
	$\delta_{ m CP}/\pi$	$1.24\substack{+0.18 \\ -0.13}$	$1.52\substack{+0.14 \\ -0.15}$		
	m_e/m_μ	0.0048 =	± 0.0002		
	$m_\mu/m_ au$	$m_{\mu}/m_{ au}$ 0.0565 ± 0.0045			
	F. Capozzi et al. Phys. Rev. D 104 (Oct, 2021)				

Tutti riprodotti entro 1σ sperimentale

VS

10 (6) parametri

12 (9) osservabili

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre IFA E 2024

Il "revival" di S_3 : risultati numerici

Predizioni del modello

Predizione: fase CP vicino a massima violazione $\,\delta_{CP}\sim 1.6\pi$

Correlazioni e scale di massa dei neutrini

1.61

 $\delta_{\rm CP}/\pi$

0.085

1.57

1.59

1.63

IFAE 2024

VEV del modulus

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

Predizioni del modello

Precise predizioni su masse dei neutrini e altre osservabili di interesse sperimentale

 $2 \odot 24$

Il "revival" di S₃: conclusioni

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

27

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre

IFAE 2024 Grazie per l'attenzione

Matteo Parriciatu, Dipartimento di Matematica e Fisica Roma Tre & INFN sezione Roma Tre ~~ IFAE ~2 \bigcirc 24

BACKUP

But what about a $\Gamma_2 \simeq S_3$ seesaw version?

Recent work with S.Marciano, D.Meloni: arxiv:2402.18547

Reproduces low-energy CP-violation and matter-antimatter
 asymmetry of the Universe through Leptogenesis

Introduce Minimal seesaw scenario with only 2 RHN transforming as ~ 2 under S_3 with weight 2

$$\mathcal{W}_{\nu} = gH_{u}N^{c}D_{\ell}Y_{\mathbf{2}}^{(2)} + g'H_{u}(N^{c}Y_{\mathbf{2}}^{(2)})_{\mathbf{1}'}\ell_{3} + g''H_{u}(N^{c}D_{\ell})_{\mathbf{1}}Y_{\mathbf{1}}^{(2)} + \\ + \Lambda[(N^{c}N^{c})_{\mathbf{2}}Y_{\mathbf{2}}^{(2)} + \lambda(N^{c}N^{c})_{\mathbf{1}}Y_{\mathbf{1}}^{(2)}],$$

$$M_{D} = gv_{u} \begin{pmatrix} -(Y_{2}^{2} - Y_{1}^{2}) + \frac{g''}{g}(Y_{1}^{2} + Y_{2}^{2}) & 2Y_{1}Y_{2} & \frac{g'}{g}(2Y_{1}Y_{2}) \\ 2Y_{1}Y_{2} & (Y_{2}^{2} - Y_{1}^{2}) + \frac{g''}{g}(Y_{1}^{2} + Y_{2}^{2}) & -\frac{g'}{g}(Y_{2}^{2} - Y_{1}^{2}) \end{pmatrix}_{\mathrm{RL}_{\ell}}$$

$$\mathcal{M}_R = \Lambda \begin{pmatrix} -(Y_2^2 - Y_1^2) + \lambda(Y_1^2 + Y_2^2) & 2Y_1Y_2 \\ 2Y_1Y_2 & (Y_2^2 - Y_1^2) + \lambda(Y_1^2 + Y_2^2) \end{pmatrix}_{\mathrm{RR}} \,.$$

$$m_{
u} = -M_D^T \mathcal{M}_R^{-1} M_D$$
.

Excellent fit: $\chi^2 \sim 0.98$ (but now $\delta_{\rm CP}$ is fitted)

Backup slides: Clebsch-Gordan

 \blacktriangleright Clebsch-Gordan coefficients for S_3

$$\mathbf{2}\otimes\mathbf{2} = \mathbf{1}\otimes\mathbf{1}'\otimes\mathbf{2} egin{cases} \mathbf{1} & \sim & \psi_1arphi_1 + \psi_2arphi_2\ \mathbf{1}' & \sim & \psi_1arphi_2 - \psi_2arphi_1\ \mathbf{2} & \sim & \psi_1arphi_2 - \psi_2arphi_1\ \mathbf{2} & \sim & \left(egin{array}{c} \psi_1\ \psi_2\ \mathbf{2}\ \mathbf{2}\ \mathbf{2}\ \mathbf{2}\ \mathbf{2}\ \mathbf{1}'\ \mathbf{2}\ \mathbf{2}\$$

$$egin{aligned} \mathbf{1}' \otimes \mathbf{1}' &= \mathbf{1} & \sim y_1 y_2 \ \mathbf{1}' \otimes \mathbf{2} &= \mathbf{2} & \sim & egin{pmatrix} -y_1 \psi_2 \ y_1 \psi_1 \end{pmatrix} \end{aligned}$$

 $y_1, y_2 \equiv \text{pseudo-singlets} (1')$

e.g.
$$(D_{\ell}Y_2(\tau))_{1'} = (D_{\ell})_1(Y_2(\tau))_2 - (D_{\ell})_2(Y_2(\tau))_1 \sim \mathbf{1}'$$

Modular symmetry vs traditional: an example

Non-Abelian discrete flavour symmetry

$$\mathcal{W}_L \supset \frac{\alpha}{\Lambda} E_1^c (L\varphi)_1 H_d$$

$$\varphi \sim \mathbf{2} = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}$$

Free parameters

Structure dependent on the symmetry breaking sector

Modular flavour symmetry

$$\mathcal{W}_L \supset \alpha E_1^c[LY_2(\tau)]_1 H_d$$

$$Y_{\mathbf{2}}(\tau) \sim \mathbf{2} = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

Completely fixed by modular group

The only unknown is the complex VEV of τ

The Modular symmetry approach

 $\sigma \equiv$

Modular-invariant SUSY action

$$S = \int d^4x \int d^2\theta d^2\bar{\theta} \ K(\Phi,\bar{\Phi}) + \left[\int d^4x \int d^2\theta \ W(\Phi) + \text{h.c.} \right]$$

$$K\ddot{a}hler \text{ potential}$$

$$\sigma \equiv \Lambda_{\tau} \tau$$

$$Superpotential$$

$$Gives the kinetic terms after the modulus acquires a VEV \\A minimalistic form is chosen$$

$$A \min anistic form is chosen$$

$$Fhe superfields transform as:$$

$$\left\{ \tau \to \gamma(\tau) = \frac{a\tau + b}{c\tau + d} \\ \varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)} \end{aligned}
, with \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_N$$

$$\left\{ \begin{array}{c} W(\Phi) \to W(\Phi) \\ W(\Phi) \to W(\Phi) \\ K(\Phi,\bar{\Phi}) \to \underbrace{K(\Phi,\bar{\Phi}) + f(\Phi) + f(\bar{\Phi})} \\ W(\Phi) \to W(\Phi) \\ K(\Phi,\bar{\Phi}) \to \underbrace{K(\Phi,\bar{\Phi}) + f(\Phi) + f(\bar{\Phi})} \\ Kahler transformation \\ \end{array} \right\}$$

Backup slides

The fundamental domain

$$\mathcal{D} = \left\{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0, |\operatorname{Re} \tau| \le \frac{1}{2}, |\tau| \ge 1 \right\}$$

Every VEV outside this domain can be mapped here through modular symmetry

In our case, even a small departure from imaginary axis results in sizeable CP-violating phase

Backup slides

The fundamental domain

$$\mathcal{D} = \left\{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0, |\operatorname{Re} \tau| \le \frac{1}{2}, |\tau| \ge 1 \right\}$$

Every VEV outside this domain can be mapped here through modular symmetry

CP conserving values

The Kähler potential...

In a bottom-up approach, this is unjustified

M.-C. Chen, S. Ramos-Sánchez, and M. Ratz, "A note on the predictions of models with modular flavor symmetries," *Physics Letters B* 801 (Feb, 2020) 135153.

Th

This question is an open one

The Modular symmetry approach

The group generators

Finite modular group can be defined: $\Gamma_N \equiv \overline{\Gamma} / \overline{\Gamma}(N)$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) \, \middle| \, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

subgroups of Γ N=1,2,3...called "level"

 $\overline{\Gamma} \equiv \Gamma / \{ \pm \mathbb{I} \}$ $\overline{\Gamma}(N) \equiv \Gamma(N) / \{ \pm \mathbb{I} \}$

Generators S and T of the modular group Γ_N

$$\tau \xrightarrow{\mathbf{S}} -\frac{1}{\tau} \qquad \tau \xrightarrow{\mathbf{T}} \tau + 1 \qquad S^2 = T^N = (ST)^3 = \mathbb{I}$$
$$S = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \qquad , \qquad T = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$$

 S_3 Generators S and T satisfy: $S^2 = T^2 = (ST)^3 = \mathbb{I}$

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I},$$

The Modular S_3 model: lowest weights

Level 2 modular forms of lowest weight (2) constructed from Dedekind's Eta "seed function"

Closed set under the modular group

$$Y(\alpha, \beta, \gamma | \tau) = \frac{d}{d\tau} [\alpha \log \eta(\tau/2) + \beta \log \eta((\tau+1)/2) + \gamma \log \eta(2\tau)]$$

 $\alpha + \beta + \gamma = 0$

This fixes the constants

$$\begin{cases} Y_1(\tau) = \frac{C}{2} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'\left(\frac{\tau+1}{2}\right)}{\eta\left(\frac{\tau+1}{2}\right)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right] \\ Y_2(\tau) = \frac{C}{2} \sqrt{3} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'\left(\frac{\tau+1}{2}\right)}{\eta\left(\frac{\tau+1}{2}\right)} \right] \end{cases}$$

"C" arbitrary

Impose transformation properties under S_3 generators

$$\begin{split} \rho(S) &= \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ (\rho(S))^2 &= \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}, \end{split}$$

$$\left(\begin{array}{c}Y_{1}(\tau)\\Y_{2}(\tau)\end{array}\right)_{2} \rightarrow (c\tau+d)^{2}\rho(\gamma)_{2} \left(\begin{array}{c}Y_{1}(\tau)\\Y_{2}(\tau)\end{array}\right)_{2}$$

The Modular S_3 model: the normalisation

Level 2 modular forms of lowest weight (2) constructed from Dedekind's Eta "seed function"

$$\{\eta(\tau/2), \eta\left(\frac{\tau+1}{2}\right), \eta(2\tau)\}$$

Closed set under the modular group

"C" arbitrary

$$\begin{cases} Y_1(\tau) = \frac{C}{2} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'\left(\frac{\tau+1}{2}\right)}{\eta\left(\frac{\tau+1}{2}\right)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right] \\ Y_2(\tau) = \frac{C}{2} \sqrt{3} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'\left(\frac{\tau+1}{2}\right)}{\eta\left(\frac{\tau+1}{2}\right)} \right] \\ \downarrow \\ \downarrow \\ \downarrow \\ In our case, this is true if \\ C is purely imaginary \\ C = \frac{7i}{2} \\ The choice made in this \end{cases}$$

work

 25π

 Impose CP symmetry on the model
 Superpotential parameters must be real: less free parameters

P. Novichkov, J. Penedo, S. Petcov, A. Titov Journal of High Energy Physics **2019** no. 7, (Jul, 2019)

$$Y(\tau) \xrightarrow{\mathrm{CP}} Y(-\tau^*) = Y^*(\tau)$$

Only source of CPV is the VEV of modulus ${\cal T}$

The Modular S_3 model: charged-leptons sector

Found two viable choices for modular charges and weights

Backup slides

Numerical procedure

Define a "figure of merit", i.e. chi-square for every set of parameters $l(p_i) \equiv \sqrt{\chi^2(p_i)}$

Define a "potential" with a given temperature T and a threshold

$$V(p_i) = \begin{cases} l(p_i) &, \quad l(p_i) \le l_{\max} \\ +\infty &, \quad \text{otherwise} \end{cases}$$

 $\chi^{2}(p_{i}) = \sum_{j=1}^{6} \left(\frac{q_{j}(p_{i}) - q_{j}^{\text{b-f}}}{\sigma_{j}}\right)^{2}$ $p_{i} = \{\tau, \beta/\alpha, \gamma/\alpha, \dots, g'/g, g_{p}/g, \dots\}$ $q_{j} = \{\sin^{2}\theta_{12}, \sin^{2}\theta_{13}, \sin^{2}\theta_{23}, m_{e}/m_{\mu}, m_{\mu}/m_{\tau}, r\}$

P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, "Modular S_4 models of lepton masses and mixing," (2019)

 At iteration "t", generate a new
 point from a Gaussian centred on the previous one Accept the new point with a probability given by: $P_{\alpha} = \min[1, \exp(V(p_i^{(t)}) - V(p_i'))/T]$ A measure of fine-tuning: Altarelli-Blankenburg

Fine-tuning =
$$\frac{\sum_{i} \left| \frac{\text{par}_{i}}{\delta \text{par}_{i}} \right|}{\sum_{i} \left| \frac{\text{obs}_{i}}{\sigma_{i}} \right|}$$

Backup slides

Model I [7]		
	Best-fit and 1σ range	
$\operatorname{Re} \tau$	$\pm 0.0895^{+0.0032}_{-0.0055}$	
$\operatorname{Im}\tau$	$1.697\substack{+0.023\\-0.016}$	
eta/lpha	$14.33\substack{+0.58\\-0.38}$	
$\gamma/lpha$	$17.39\substack{+1.38 \\ -0.87}$	
g'/g	$31.57\substack{+27.59\\-10.29}$	
g''/g	$7.17\substack{+6.36 \\ -2.36}$	
g_p/g	$8.51\substack{+7.99 \\ -3.03}$	
$v_d \alpha [\text{MeV}]$	102.14	
$v_u^2 g / \Lambda \left[\mathrm{eV} \right]$	0.47	
$\sin^2 heta_{12}$	$0.300\substack{+0.013\\-0.006}$	
$\sin^2 heta_{13}$	$0.0223\substack{+0.0004\\-0.0006}$	
$\sin^2 heta_{23}$	$0.452\substack{+0.015\\-0.009}$	
r	$0.0295\substack{+0.0007\\-0.0006}$	
m_e/m_μ	$0.0048\substack{+0.0001\\-0.0002}$	
$m_\mu/m_ au$	$0.0578\substack{+0.0023\\-0.0040}$	
Ordering	NO	
δ/π	$\pm 1.594^{+0.007}_{-0.010}$	
$m_1 [{ m eV}]$	$0.0182\substack{+0.0018\\-0.0014}$	
$m_2 [{\rm eV}]$	$0.0201\substack{+0.0017\\-0.0013}$	
$m_3 \; [\mathrm{eV}]$	$0.0537\substack{+0.0006\\-0.0005}$	
$\sum_i m_i [\text{eV}]$	$0.092\substack{+0.004\\-0.003}$	
$\langle m_{etaeta} angle~[{ m meV}]$	$18.89^{+1.90}_{-1.47}$	
$m_{eta}^{\mathrm{eff}} \; \mathrm{[meV]}$	$20.26^{+1.69}_{-1.30}$	
$lpha_1/\pi$	$\pm 1.124^{+0.014}_{-0.017}$	
α_2/π	$\pm 0.949^{+0.005}_{-0.005}$	
Fine-tuning	12.2	
$\chi^2_{ m min}$	0.16	

Model II [8]

	Best-fit and 1σ range
$\operatorname{Re} \tau$	$\pm 0.090^{+0.004}_{-0.004}$
$\operatorname{Im}\tau$	$1.688\substack{+0.015\\-0.018}$
eta/lpha	$1.03\substack{+0.04\\-0.04}$
$\gamma/lpha$	$1.26\substack{+0.12 \\ -0.08}$
$lpha_D/lpha$	$1.33\substack{+1.51 \\ -1.05}$
g'/g	$41.9^{+73.7}_{-12.8}$
$g^{\prime\prime}/g$	$9.55\substack{+16.81 \\ -2.91}$
g_p/g	$11.5^{+21.2}_{-3.8}$
$v_d \alpha \; [\text{MeV}]$	1404.6
$v_u^2 g / \Lambda [\text{eV}]$	0.35
$\sin^2 heta_{12}$	$0.305\substack{+0.009\\-0.015}$
$\sin^2 heta_{13}$	$0.0222\substack{+0.0007\\-0.0006}$
$\sin^2 heta_{23}$	$0.454\substack{+0.007\\-0.008}$
r	$0.0295\substack{+0.0007\\-0.0007}$
m_e/m_μ	$0.0048\substack{+0.0002\\-0.0002}$
$m_\mu/m_ au$	$0.0570\substack{+0.0034\\-0.0048}$
Ordering	NO
δ/π	$\pm 1.597^{+0.009}_{-0.006}$
$m_1 [{\rm eV}]$	$0.0174\substack{+0.0011\\-0.0014}$
$m_2 [{\rm eV}]$	$0.0194\substack{+0.0010\\-0.0012}$
$m_3 \; [\mathrm{eV}]$	$0.0535\substack{+0.0004\\-0.0004}$
$\sum_i m_i [\text{eV}]$	$0.090\substack{+0.002\\-0.003}$
$\langle m_{\beta\beta} \rangle \; [{ m meV}]$	$18.14\substack{+1.17 \\ -1.48}$
$m_{eta}^{\mathrm{eff}}~\mathrm{[meV]}$	$19.60\substack{+1.02 \\ -1.25}$
$lpha_1/\pi$	$\pm 1.129^{+0.019}_{-0.013}$
$lpha_2/\pi$	$\pm 0.946^{+0.004}_{-0.004}$
Fine-tuning	11.2
$\chi^2_{ m min}$	0.074

Backup slides

	Best-fit and 1σ range
$\operatorname{Re}\tau$	$\pm 0.244^{+0.012}_{-0.067}$
$\operatorname{Im}\tau$	$1.132\substack{+0.027\\-0.297}$
eta/lpha	$0.92\substack{+0.85\\-0.03}$
$\gamma/lpha$	$-1.20\substack{+0.06\\-2.14}$
$\log_{10}(lpha_D/lpha)$	$-13.4^{+13.2}_{-76.3}$
g'/g	$2.76\substack{+0.21 \\ -0.23}$
$g^{\prime\prime}/g$	$-2.53\substack{+0.13\\-0.03}$
$\log_{10}(\lambda)$	$-12.2^{+10.9}_{-59.2}$
$v_d \alpha$, [GeV]	$1.08\substack{+0.06\\-0.69}$
$v_u^2g^2/\Lambda~[{\rm eV}]$	$3.46\substack{+0.55\\-1.65}$
$\sin^2 heta_{12}$	$0.305\substack{+0.011\\-0.011}$
$\sin^2 heta_{13}$	$0.0221\substack{+0.0006\\-0.0005}$
$\sin^2 heta_{23}$	$0.448\substack{+0.014\\-0.016}$
r	$0.0296\substack{+0.0006\\-0.0008}$
m_e/m_μ	$0.0048\substack{+0.0001\\-0.0002}$
$m_\mu/m_ au$	$0.0574\substack{+0.0032\\-0.0050}$
Ordering	NO
J_{CP}	$-0.018\substack{+0.002\\-0.002}$
$lpha_1/\pi$	0
α_2/π	$\pm 0.112^{+0.792}_{-0.014}$
$m_1 \; [{ m meV}]$	0
$m_2 [{ m meV}]$	$8.620\substack{+0.095\\-0.123}$
$m_3 [{ m meV}]$	$50.806\substack{+0.016\\-0.021}$
$\sum_i m_i [\text{eV}]$	$0.0594\substack{+0.0001\\-0.0001}$
$ m_{etaeta} $ [meV]	$3.61\substack{+0.09\\-0.09}$
$m_\beta^{\rm eff}~[{\rm meV}]$	$8.90\substack{+0.10\\-0.09}$
$d_{ m FT}$	3.03
$\chi^2_{ m min}$	0.98

Minimal seesaw model: arxiv:2402.18547 with S.Marciano, D.Meloni

Ideas to explore: sterile neutrino (3+1) scheme

Non-standard interactions

from Feruglio's slides at Mod. Symmetry Bethe Workshop