

Studio di un algoritmo di fit cinematico per la ricera di coppie di bosoni di Higgs nel canale $b\bar{b}\gamma\gamma$ ad ATLAS

Romano Orlandini^[1]

In collaborazione con B. Di Micco^[1], F. Montereali^[1]

^[1]Università degli studi & INFN Roma Tre,

ττ

0.39%

0.33%

ZZ

0.069%

YΥ

1. Introduzione

La misura dei termini di auto-accoppiamento del campo di Higgs è uno step fondamentale per la determinazione del suo potenziale.

$$V(\phi^{\dagger}\phi) = \mu^2 \phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2 \supset \frac{1}{2}m_H^2 H^2 + \lambda_3 H^3 + \frac{\lambda_4}{4}H^4$$

Tra questi, l'accoppiamento tri-lineare (λ_3) è ad oggi il termine più accessibile in quanto i suoi effetti influenzano direttamente i diagrammi di produzioni di coppie di bosoni di Higgs in interazioni protone-protone.

Tuttavia, questi processi sono molto rari e produzioni di coppie *HH* non sono ancora mai state osservate all'attuale luminosità di LHC. Dunque <u>nessun termine di auto-accoppiamento</u> è stato ancor mai misurato.

Di conseguenza, una delle attuali priorità di questi studi è lo sviluppo di metodi di analisi dati sempre più performanti.

2. Canale di decadimento

Il termine di auto-accoppiamento può essere misurato osservando vari canali di decadimento. Tra i più sensibili vi sono i canali $b\overline{b}b\overline{b}$, $b\overline{b}\tau^+\tau^-$ e $b\overline{b}\gamma\gamma$ ma ognuno di questi ha comunque dei pro e contro da tenere in considerazione.

H → bbbb: Maggiore BR (34%) Fondo multi-jet		bb	WW
$H \rightarrow b\overline{b}\tau^+\tau^-$:	bb	34%	
n compromesso tra BR e acità di ricostruzione nodesta (7.3%)	WW	25%	4.6%
mportanti contributi di fondi da processi FW e di quark top	ττ	7.3%	2.7%
	ZZ	3.1%	1.1%
$a \rightarrow bb\gamma\gamma$: Stato finale relativamente pulito		0.27.07	0.100

Upper limit al 95% dell'accoppiamento anomalo ($\kappa_{\lambda} := \lambda_3 / \lambda_3^{SM}$) ottenuto combinando più canali di decadimento Deviazioni da 1 indicano fisica **BSM**.

Nel canale $HH \rightarrow bb\gamma\gamma$, uno tra i metodi più promettenti è il **Fit Cinematico**, un algoritmo potenzialmente in grado di migliorare sensibilmente la risoluzione di osservabili adroniche e migliorare così la sensibilità dell'esperimento.

•	Eccellente	insoluzione y y
×	Bassa BR	(0.26%)

Gli studi qui proposti sono riferiti al canale $HH \rightarrow b \bar{b} \gamma \gamma$, uno dei canali più promettenti proprio per via dell'ottima risoluzione della sua componente EM la quale lo rende un candidato ideale per l'applicazione di un Fit Cinematico.

3. Fit Cinematico

3.1 Basi concettuali

In generale, il Fit Cinematico è un algoritmo di analisi che permette di migliorare la risoluzione di particolari osservabili fisiche di un evento, vincolandole secondo note relazioni cinematiche del decadimento.

Nel canale $HH \rightarrow b\bar{b}\gamma\gamma$, possiamo chiaramente sfruttare informazioni come la conservazione dell'impulso trasverso totale dell'evento e la massa dell'Higgs per correggere la componente adronica del decadimento (i *b***-jets**), migliorandone la notoriamente cattiva risoluzione energetica, bilanciandola con la componente fotonica.

4. Funzioni di Trasferimento

Le **Funzioni di Trasferimento** di energia (E) e impulso trasverso (p_T) dei jet sono ottenute tramite studi di simulazioni montecarlo di segnale ggF

	TransferFunction_Barrel_2.0	_3.7_In(pT[GeV
2500 A	TLAS Simulation /ork in Progress	Λ

3.2 Implementazione

In pratica, il Fit Cinematico viene applicato tramite la minimizzazione di una **NNL** (Negative Log Likelihood) costruita ad hoc, i cui parametri liberi sono proprio le osservabili dell'evento.

$$-2\log(\mathcal{L}) = \sum_{j=jets} \left[-2\log\left[f_E\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\log\left[f_{p_T}\left(\frac{pT_{fit,j} - pT_{Event,j}}{pT_{fit,j}}\right)\right]\right] + \sum_{j=photons} \left[\left(\frac{E_{fit,j} - E_{Event,j}}{\sigma_E}\right)^2\right] - 2\lambda_{pT}\log[f_2(p_X^{HH})] - 2\lambda_{pT}\log[f_2(p_Y^{HH})] - \lambda_m\left(m_{bb}^{fit} - m_H\right)^2$$

 $\operatorname{con} p_{X,Y}^{HH} = p_{X,Y}^{\gamma_1} + p_{X,Y}^{\gamma_2} + p_{X,Y}^{bjet_1} + p_{X,Y}^{bjet_2} + \left[\sum_{i=1}^{\to 3} p_{X,Y}^{Add \ jet_i}\right]$ La likelihood presenta due tipologie di componenti:

- > Funzioni di trasferimento:
 - $\ge \text{ Jet (risoluzioni di } E e p_T) \rightarrow f_{E/p_T} = N \cdot (tan^{-1}(a(x-m)) + \frac{\pi}{2})^{\alpha} \cdot (e^{-\frac{(x-\mu)^2}{2\sigma^2}}) \cdot (tan^{-1}(-b(x-n)) + \frac{\pi}{2})^{\beta}$ \succ Fotoni (risoluzione E)

> Vincoli:

> p_T totale (distribuzioni per evento) $\rightarrow f_2 = N \cdot (tan^{-1}(a(x-m)) + \frac{\pi}{2})^{\alpha}(tan^{-1}(-b(x-n)) + \frac{\pi}{2})^{\beta}$ Massa invariante di-jet (fissata alla massa dell'Higgs)

5. Vincoli sugli impulsi

I **vincoli** in *pT* sono ottenuti in maniera simile ma separando i casi con diversi numeri di '*jet addizionali*' (l'analisi non ammette più di 5 jet totali nell'evento per tenere sotto controllo il background **ttH**).

Le PDF desiderate sono ottenute fittando con funzioni opportune le distribuzioni di $\frac{E_{Truth}-E_{Reco}}{T}$ e $\frac{pT_{Truth}-pT_{Reco}}{T}$ in 4 specifiche regioni di η (Barrel, Crack, Endcap e NoTrack) e 6 range di $log(p_T)$ (6 intervalli compresi in $log(p_T) \in [2, 6]$ contenenti approssimativamente lo stesso numero di eventi).

Questo produce un totale di 24 distribuzioni che sono state fittate con una appropriata combinazione di '*funzioni gradino*':

$$TaOGaTa = N \cdot (tan^{-1}(a(x-m)) + \frac{\pi}{2})^{\alpha} \cdot (e^{-\frac{(x-\mu)^2}{2\sigma^2}}) \cdot (tan^{-1}(-b(x-n)) + \frac{\pi}{2})^{\beta}$$

$$Gaussian$$

La funzione ad hoc è giustificata dalla necessità di avere una funzione differenziabile (per minimizzare facilmente la NLL) ma anche versatile (vista la grande variazione delle distribuzioni a diverse scale di energia).

Anche la funzione di fit usata in questo caso è una combinazione di funzioni a gradino come la precedente anche se un po' più semplice.

 $TaOTa = N \cdot \left(tan^{-1}\left(a(x-m)\right) + \frac{\pi}{2}\right)^{\alpha} \cdot \left(tan^{-1}\left(-b(x-n)\right) + \frac{\pi}{2}\right)^{\beta}$

Jet addizionali: jet extra rispetto a quelli richiesti dal segnale minimo (2 b-jet) probabilmente dovuti a fenomeni di radiazione di stato iniziale/finale.

6. Risultati

Le performance dell'algoritmo sono valutate su un campione di segnale montecarlo $HH \rightarrow b \bar{b} \gamma \gamma$ prodotto per processo di **ggF** con $\kappa_{\lambda} = 1$, comparando risoluzioni di osservabili particolarmente utili nella selezione del segnale (m_{bb} e m^*_{bbvv}), otteute applicando: Fit Cinematico (**KF**), Correzioni di calibrazione dei jet (**BCal**^[2]) o nessuna correzione (**NoCorr**). Per massimizzare l'impatto sulle risoluzioni di m_{bb} e m^*_{bbvv} , sono stati in realtà applicati due Fit Cinematici distinti.

Sono applicati vincoli sul p_T totale: Nessun vincolo sulla massa ($\lambda_m = 0$)

7. Conclusioni

			4
Entramhi Lvincoli sono annlicati:	GeV	0.08	ATLAS Simulatio
Stessa configurazione in p_{τ} ($\lambda_{m\tau} = 3.05$)	tries / 5	0.07	0+1+2+;
Il fattore di intensità del vincolo di massa è	Ent	0.06	Inclusive

$m^*_{bb\gamma\gamma}$: = $m_{bb\gamma\gamma}$ -	$-m_{bb} - m_{bb}$	$m_{\gamma\gamma}$ –	250 GeV
---	--------------------	----------------------	---------

Fit Cine	ma	tic	D ₂			
	GeV	0.08	ATLAS Simulation Work in Progress	٨	σ = 8.88 ± 0.50	σ = 7.91 ± 0.28
	/5(0.07		Λ	alpha2R = 1.256 ± 0.072	alpha1R = 1.287 ± 0.074
)5)	Itries	Ē	0+1+2+3 Additional Jets	Π	alphaL23 = 0.889 ± 0.068	alphaL13 = 0.895 ± 0.043
, 	Ш	0.06			pL23 = 1.23 ± 0.12	pL13 = 1.57 ± 0.12
ssae		—	Inclusive case			

Referenze

L'attuale studio ha mostrato come un algoritmo di fit cinematico sia in grado di apportare significativi miglioramenti all'analisi $HH \rightarrow bb\gamma\gamma$ tra cui: > Un miglioramento di ~ 49% sulla risoluzione di $m^*_{bb\nu\nu}$ (confronto Truth-Reco)

 \succ Un miglioramento di ~ 28% sulla risoluzione di m_{hh}

[1] ATLAS Collaboration, "Combination of searches for non-resonant and resonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}b\bar{b}$ decay channels using pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector", ATLAS-CONF-2021-052, URL: https://cds.cern.ch/record/2786865

[2] M. Belfkir, "Search for Higgs pair production at LHC collider (CERN): The first measurement for Higgs potential and search for new physics", CERN-THESIS-2021-221

Università degli studi & INFN Roma Tre

[GeV]