Unconventional search and long-lived particles at LHC: signature and experimental challenges

Giuliano Gustavino

3 April 2024 Incontri di Fisica delle Alte Energie

LLP in the SM

Long-lived particles (LLPs) are particles that are effectively stable or travel an observable distance before they decay.

G. Gustavino

Why long-lived?

$$\begin{bmatrix} \frac{1}{\tau} = \Gamma \propto g^2 |\mathcal{M}|^2 \Phi \\ \tau \end{bmatrix} \stackrel{\text{LLP}}{=} Sn \\ \stackrel{\text{sn}}{=} Sn \\$$

Standard Model

Feeble Coupling

e.g. b→clv, off-diagonal CKM, $\tau \sim ps$

Mass Scale suppression

e.g. $\mu \rightarrow ev_{\mu}v_{e}$, via W-boson, $\tau \sim 2 \mu s$

Phase space suppression

e.g. $n \rightarrow pe^{-v}$, $m_n - m_p \sim 1$ MeV, $\tau = 15$ min

w/ macroscopic lifetime can arise when:

- mall couplings
- mall phase space (suppression, small mass-splitting)
- mall matrix element (off-shell suppression)

Beyond the Standard Model

		Small coupling	Small phase space	Scale suppression
SY	GMSB			\checkmark
	AMSB		\checkmark	
SU	Split-SUSY			\checkmark
	RPV	\checkmark		
NN	Twin Higgs	\checkmark		
	Quirky Little Higgs	\checkmark		
	Folded SUSY		\checkmark	
	Freeze-in	\checkmark		
DN	Asymmetric			\checkmark
	Co-annihilation		\checkmark	
Portals	Singlet Scalars	\checkmark		
	ALPs			\checkmark
	Dark Photons	\checkmark		
	Heavy Neutrinos			\checkmark

Why searching for LLP?

The search for beyond the Standard Model LLPs is

* well-motivated from a theoretical perspective

- upper bounds on $c\tau$ from potentially spoiling BBN $\Rightarrow \tau \sim 0.1 10^4$ s
 - way too loose to concern LHC experiments
- Iower bounds depend on the models

* exciting from an experimental point of view

- huge variety of spectacular signatures
- still largely unprobed scenarios
- large room for novel ideas
- many opportunities for new experiments

G. Gustavino

The cosmological landscape

inspired by J. Feng

Dark Sectors

Simplified benchmarks are often used to allow a reinterpretation in more complete, complex and novel theories

Dark sectors can hide a world of particles, including DM candidates, w/ the right relic abundance

scalar portal spin-0

G. Gustavino

vector portal spin-1 γ/Z $ar{f}$ M' f

neutrino portal spin-1/2

Decay length

Any given particle's lifetime follows an exponential distribution: particles with a short proper lifetime can decay with a large lab-frame distance

- all subdetectors must be used for optimal results *
- **prompt** and **invisible** final states searches can play a fundamental role!

distance travelled

distance travelled

based on the ATLAS geometry

LHC experiments

LHC experiments can probe different phase-spaces

G. Gustavino

Various sub-detectors are sensitive to different life-time ranges

Hunting LLP

Direct detection

- Through direct interaction w/ the detector
 - Energy loss
 - ▶ TOF
 - special track properties
- Mostly fit charged LLP

G. Gustavino

Indirect detection

- *Through SM or invisible decay products
 - "Isolated" activity inconsistent with prompt or expected instrumental / SM
- Natural fit for neutral LLP but also sensitive to charged ones

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
- - reducing sensitivity and increasing model dependence of results

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
 - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
 - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

Main experimental challenges

Triggering

O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)

- - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

Main experimental challenges

Triggering

O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)

- - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

Main experimental challenges

Triggering

O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)

- - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)

- - reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

Estimation of signal efficiency

□ Often not possible, as no SM standard candle giving sufficiently LLP signatures / decay signatures

G. Gustavino

*Missing transverse energy: momentum imbalance on the transverse plane

Inner Tracker based searches

G. Gustavino

probing up to $c\tau \sim O(dm)$

*transverse impact parameter

Inner Tracker based searches

- - integrated in the reco-chain
- Integration of tracks @ HLT!

G. Gustavino

0.5x fakes

CMS

Searches for LLP in ID

Signature: Displaced Jets & displaced Vertices (DVs) in the ID **BKG:** DV from random crossing, heavy flavour jets, material interactions

new production channels (VH, VBF)

- *** new LRT algorithm**: x40 s/√b tracks
- * analysis strategy requiring ≥ 1 displaced jet
 - sensitive to more signatures

Factor of 10 improvements w/ the same Run-2 dataset additional gain with <u>new dedicated triggers</u> to exploit ggF production in Run-3

* New Run-3 triggers: 2 jets with ≤ 1 prompt track (L1 HT or L1 HT+MU6)

- efficiency 4-17 times higher than Run 2
- new reconstruction for displaced secondary and tertiary vertices

new displaced jet taggers based on GNN

Factor of 10 improvements w/ 1/4 of the Run-2 stats

Additional gain (+40-100% signal) with 2023 data parking triggers

021-32

Emerging jets

QCD-like dark sector producing dark showers O Dark pions can have a non-null lifetime

Signature: high multiplicity of DVs and displaced tracks **BKG**: QCD, HF jets

- * New Run-2 results
 - GNN discriminates EJ vs QCD jets

New dedicated trigger in Run-3

selecting jets with small prompt track fraction

Fractional/multi-charged particles (FCP/MCP) & slow LLPs

Signature: muon-like tracks with anomalous dE/dx

BKG: instrumental effects and δ -rays, random large dE/dx from Landau tail

MCP: exploits dE/dx significance & TRT High Thresh. fraction slow LLP: <dE/dx> in pixel tracker
to estimate βγ using Beth-Bloch

 $\frac{dE}{dx} \propto \frac{z^2}{\beta^2}$

FCP: counting tracks with the number of hits with low dE/dx

e x

Calorimeter based searches

probing up to $c\tau \sim O(m)$

G. Gustavino

LLP searches in ECAL

pointing and timing measurements

Muon Spectrometer based searches

Large fiducial volume with air gaps Reconstructing displaced tracks & vertices

Compact spectrometer with lots of steel can be used as a sampling calorimeter searching for shower decays

probing up to $c\tau \sim O(10 m)$

l.2 33.**5**° 1.3 30.5° 1.4 27.7° 1.5 25.2° 1.6 22.8° 1.7 20.7° 1.8 18.8° 1.9 17.0° 2.0 15.4° 2.1 14.0° 2.2 12.6° 2.3 11.5° 2.4 10.4° 2.5 9.4° 3.0 5.7°

LLP searches in MS

Signature: high multiplicity hadron showers in MS **BKG:** punch through jets, BIB

- Dedicated Trigger
 - multiple ROIs
- Dedicated Vertex algorithm
 - multiple tracklets in MDTs

~BKG-zero searches

High cluster reconstruction

- > 50 hits with ε up to 80-90%
- Highly correlated with amount of steel in front of CSC

LLP searches in MS

Signature: collimated jet structures of leptons or light hadrons → low masses

- Collimated bunch of SA muons
 - Narrow scan triggers
- Displaced jet w/ large E_H/E_{EM}
 - calo-ratio triggers

New Run-3 triggers modifications of hardware L1 and HLT triggers allow for reducing greatly the muon p_T thresholds!

Large sensitivity gain even w/ 1/3 of the 13 TeV data stats!

G. Gustavino

Dense NN (per track) tagger in **µ-channels**

Convolutional NN tagger in **calo-channels** trained on low-level inputs

Summary plots

LLP searches are limited by the detector acceptance...

G. Gustavino

LHCb LLP searches

G. Gustavino

Detectors Overview

Many large community studies (LLP Community, Physics Beyond Collider at CERN, Snowmass in the US...), and many new experiments have been proposed for labs worldwide.

(WG4 Coreword): 1	Community Report Marco Battaglieri (SAC co-chair), ¹ Alberto Belloni (Coordinator), ² / Convener), ³ Priscilla Cushman (Coordinator), ⁴ Bertrand Echenard Rouven Essig (WG1 Convener). ⁶ Juan Estrada (WG1 Convener). ³	Aaron Chou (WG2 WG3 Convener), ⁵ Jonathan L. Feng	10-
¹ BVTR, Fudow, Italy ¹ Upgrades ¹ BVTR, Fudow, Italy ¹ BVTR, Fu	Rouven Essig (WG Convener) ⁴ Inan Estrada (WG1 Convener) ⁴ (WG4 Convener), ³ Johanne Laguirre (WG3 Convener) ⁴ Inan Estrada (WG1 Convener) ⁴ (WG4 Convener), ³ Johanne Laguirre (WG3 Convener) ⁴ James Alexander, ³ James Alexander, ³ Bluov, ⁹ Kimberly Boulay, ⁴⁶ James Boye Bunting, ¹² Mare Caffe Ganpaolo Carosi, ⁴⁴ J. Hyook Chang, ⁶ Swi Control, J. J. Feng ²⁴ , Bunting, ¹² Mare Caffe Ganpaolo Carosi, ⁴⁴ J. Robert Cooper, ³⁰ Mie D'Urso, ^{45,46} Eric D. Patrick DeNivervill Bartosz Forma, ⁴⁷ J. Hartosz Forma, ⁴⁷ J. Hong, ²⁹ Todd Hossbu Konvaris, ²⁹ Johanne Kaplinghat, ⁷ Rak Kouvaris, ²⁹ Johanne Kapinghat, ⁷ Rak Kouvaris, ²⁹ Johanne Kapinghat, ⁷ Rak Kouvaris, ²⁹ Johanne, ¹⁰ Kapinghat, ⁷ Rak Kouvaris, ²⁹ Johanne, ¹⁰ Kapinghat, ⁷ Rak Kouvaris, ⁹ Johanne, ¹⁰ <i>Conversione</i> , ¹⁰ <i>Con</i>	Lumbur J. Ber CRNFREERPERT Se Boyod Colliders at CERN Carrows Carrows <th>10^{-1} 10^{-1} 10^{-1} 10^{-1}</th>	10^{-1} 10^{-1} 10^{-1} 10^{-1}

Other LLP detectors

Conclusions

Rich search LLP program @ LHC

Interplay between

detector technologies

allows to extensively probe different lifetime regimes

LLP searches are often statistically limited! **BKG-zero searches sensitivity** $\propto \mathcal{L}$

NEW IDEAS to probe such *anomalous* signatures:

- new trigger strategies
- \triangleright e.g. data parking, data scouting, lower thresholds [1, 2, 3]
- deep learning ↔ model-independence
- new detectors technologies @ Run-4
- new dedicated experiments!

Run-2/3 ID

R-hadron Decay Radius [mm]

