

Incontri di Fisica delle Alte Energie

Firenze, 3-5 Aprile 2024

Ricerca del decadimento raro $\Sigma^+ o p \mu^+ \mu^-$ a LHCb

Daniele Provenzano

a nome della collaborazione LHCb Università e INFN Cagliari

Il decadimento $\Sigma^+ o p \mu^+ \mu^-$	LHCb a LHC
 È un processo raro a corrente neutra con cambiamento di <i>sapore</i> (FCNC) del quark s → d permesso solo al livello a un loop nel Modello Standard Branching fraction atteso [1]: 1.6 × 10⁻⁸ < B(Σ⁺ → pμ⁺μ⁻)< 9.1 × 10⁻⁸ 	 È uno dei quattro esperimenti al Large Hadron Collider al CERN di Ginevra Si occupa principalmente di: Studiare i decadimenti di adroni con quark <i>beauty</i>, <i>charm</i> e <i>strange</i>

Motivazioni

220 240 $M_{\mu\mu}$ (MeV/c²)

MeV/c²

Anomalia di HyperCP (2005) [2]

tre candidati osservati in assenza di fondo con stessa $M_{\mu\mu} = (214.3 \pm 0.5)$ MeV

 $\rightarrow \text{ possibilità che } \Sigma^+ \rightarrow p X^0 (\rightarrow \mu^+ \mu^-) \\ \text{ con } \mathcal{B} = 3.1^{+2.4}_{-1.9} \times 10^{-8}$

> 212.5 215 217.5 Μ_{μ μ} (MeV/c²)

Spiegazione dell'anomalia con ipotesi di *fisica oltre il Modello Standard (BSM*):

- Particella pseudoscalare con $\tau \sim 10^{-14}$ s
- Bosone di Higgs pseudoscalare leggero

Sgoldstino

Suulare la violazione della simmetria CP

- Rivelare possibili indizi di nuova fisica oltre il Modello Standard
- Il rivelatore è uno spettrometro a singolo braccio orientato verso la regione in avanti delle interazioni protone-protone

Analisi Run 2

Analisi Run 1

Dati di collisioni pp a energie nel centro di massa $\sqrt{s} = 7$ TeV (2011) e 8 TeV (2012) pari a una luminosità integrata di 3 fb⁻¹ [3]:

- eccesso di $10.2^{+3.9}_{-3.5}$ eventi di segnale su trascurabile fondo con 4.1σ di significanza
- $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$

- nessun picco significativo nella distribuzione di $m_{\mu^+\mu^-}$ coerente con l'esistenza di X^0

• Il decadimento $\Sigma^+ \rightarrow p\pi^0$ è usato come canale di normalizzazione $\mathcal{B}=51.77\pm0.30\%$

Normalizzazione

- $\Sigma^+ \to p \pi^0 (\to \gamma \gamma)$ ricostruito con una traccia carica più due depositi di energia nel calorimetro ECAL
- il ${\mathcal B}$ del segnale si può calcolare come

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \,\mathcal{B}(\Sigma^+ \to p\pi^0)$$

RUN 2

Buon accordo tra dati e simulazione per la ricostruzione della cinematica

Dati di collisioni pp a energie nel centro di massa $\sqrt{s} = 13$ TeV (2016-2018) pari a una luminosità integrata di 5.6 fb⁻¹:

MIGLIORAMENTI

- incremento $\times 4$ statistica (\mathcal{L} e sezione d'urto)
- incremento $\times 10$ efficienza del trigger (HLT)

SELEZIONE

- Selezione finale basata su BDT
- Variabili: angolo di pointing – $IP\chi^2$, $Vtx\chi^2$, $FD\chi^2$, DOCA della Σ^+ – $IP\chi^2$, p_T del protone
 - min(IP χ^2), min(p_T) dei muoni

[1] Phys. Rev. D72 (2005) 074003, JHEP 10 (2018) 040
[2] Phys. Rev. Lett. 94, 021801 (2005)
[3] Phys. Rev. Lett. 120, 221803

daniele.provenzano@cern.ch