
Corso base su docker 2023 (2nd Ed) - November 21-23

Docker architecture, images 
and containers

Basic concepts

Marica Antonacci (INFN Bari)
marica.antonacci@ba.infn.it



Corso base su docker 2023 (2nd Ed) - November 21-23

Outline

● What is a container?
● Docker architecture
● Docker main components

○ Images
○ Containers
○ Registries

● Docker CLI & GUI
● Hands-on#1
● References

2



Corso base su docker 2023 (2nd Ed) - November 21-23

What are containers?

Containers are a form of virtualization technology that allows you to package an
application and its dependencies together, isolating it from the underlying system

3

❏ Key concepts:
➢ Isolation: Containers provide a secure and 

isolated environment for applications, 
preventing conflicts with other applications 
or the host system.

➢ Portability: Containers can run consistently 
across different environments, making it 
easy to develop and deploy applications.

➢ Efficiency: Containers are efficient in terms 
of resource usage, as they share the host OS 
kernel.



Corso base su docker 2023 (2nd Ed) - November 21-23

Benefits of containerization

Containerization offers several advantages in software development and deployment.

❏ Build it once, run it anywhere: Developers can easily and reliably run applications in different
environments, such as local desktops, physical servers, virtual servers, production environments,
and public and private clouds.

❏ Improved Developer Productivity: Containers allow developers to create predictable runtime
environments. The old adage “it worked on my machine” is no longer a concern! In a containerized
architecture, developers and operations teams spend less time debugging and diagnosing
environmental differences, and can spend their time building and delivering new product features.

❏ Smooth scaling: Applications in containers can be easily scaled up or down to handle varying
workloads. Containers support a true microservices approach to development.

❏ Resource Optimization: Containers optimize resource utilization, making efficient use of server
resources.

4



Corso base su docker 2023 (2nd Ed) - November 21-23

Virtual Machines vs Containers

5

The Containers work on the concept of OS-level virtualization, i.e. the kernel's ability to make multiple 
isolated environments on a single host.



Corso base su docker 2023 (2nd Ed) - November 21-23

Virtual Machines vs Containers

6

Virtual Machine Container

Pros: 
VMs provide strong isolation and 
offer flexibility in choosing 
different operating systems.

Pros:
Lightweight and efficient, 
containers share the host OS 
kernel, resulting in faster startup 
and efficient resource usage.

Cons:
VMs are heavier, slower to start, 
and consume more resources 
due to their independent OS.

Cons:
Limited OS compatibility and less 
isolation compared to VMs.



Corso base su docker 2023 (2nd Ed) - November 21-23

OS-level virtualization pillars

Namespaces provide process and resource isolation.

Control Groups (cgroups) are responsible for resource
allocation and management.

Security Modules (AppArmor, SELinux) restrict a
container's capabilities. They ensure that containers can
only access the resources and actions they are explicitly
allowed to, enhancing overall security.

Seccomp (Secure Computing Mode): Seccomp allows
administrators to define a list of system calls that
containers are allowed to make. It significantly reduces
the attack surface by limiting the system calls available
to containers. The default seccomp profile for Docker,
disables around 44 syscalls out of 300+.

7

See this interesting blog about Namespaces and Cgroups

https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-work/


Corso base su docker 2023 (2nd Ed) - November 21-23

Restricting visibility: Namespaces

Linux namespaces: It is a feature of Linux kernel to
isolate resources from each other. This allows one set
of Linux processes to see one group of resources while
allowing another set of Linux processes to see a
different group of resources.

There are several kinds of namespaces in Linux: Mount
(mnt), Process ID (PID), Network (net), User ID (user)
and Interprocess Communication (IPC).

For example, two processes in two different mounted
namespaces may have different views of what the
mounted root file system is. Each container can be
associated with a specific set of namespaces, and
these namespaces are used inside these containers
only.

8



Corso base su docker 2023 (2nd Ed) - November 21-23

Restricting usage: Control groups

cgroups provide an effective mechanism for
resource limitation.

With cgroups, you can control and manage
system resources (CPU, Memory, Networking,
disk I/O) per Linux process, increasing overall
resource utilization efficiency.

Cgroups allow to control resource utilization per
container.

9



Corso base su docker 2023 (2nd Ed) - November 21-23

Introduction to docker

❏ Docker is a leading containerization platform that simplifies the creation,
deployment, and management of containers.

❏ Docker plays a pivotal role in modern software development and deployment
practices.

❏ Notable companies like Netflix and Uber rely on Docker to enhance their
application delivery processes.

https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-
business-using-sachin-adi/

10

https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-business-using-sachin-adi/
https://www.linkedin.com/pulse/dockers-impact-how-leading-companies-scaled-business-using-sachin-adi/


Corso base su docker 2023 (2nd Ed) - November 21-23

Docker architecture

11

Docker works on a client-server architecture:

● a server with a long-running daemon
process dockerd.

● APIs which specify interfaces that
programs can use to talk to and
instruct the Docker daemon.

● A command line interface (CLI) client
docker.

Docker is an open source platform for building, deploying, and managing containerized 
applications



Corso base su docker 2023 (2nd Ed) - November 21-23

docker, containerd, runc

When you run a container with docker, you’re actually running
it through the Docker daemon, containerd, and then runc.

● containerd is an industry standard high-level runtime for
containers. It's main responsibility is to maintain the
container's lifecycle (create/update/stop/restart or
delete).

● runc is the runtime specification given by OCI (Open
Container Initiative) for running containers, interacting
with existing low-level Linux features, like namespaces
and control groups.
○ after the creation of the container runc exits and the lifecycle of the

container is managed by the shim(*) process (that becomes parent of
the container).

12

(*) In tech terms, a shim is a component in a software system, which acts as a bridge between different APIs, or as a compatibility layer. A 
shim is sometimes added when you want to use a third-party component, but you need a little bit of glue code to make it work.



Corso base su docker 2023 (2nd Ed) - November 21-23

Docker main components 

● Docker containers: Isolated user-space environments running the same or
different applications and sharing the same host OS kernel. Containers are
created from Docker images.

● Docker images: Docker templates that include application libraries and
applications. Images are used to create containers and you can bring up
containers immediately. You can create and update your own custom images
as well as download build images from Docker's public registry.

● Docker registries: This is an images store. Docker registries can be public or
private, meaning that you can work with images available over the internet or
create your own registry for internal purposes. One popular public Docker
registry is Docker Hub.

13

https://hub.docker.com/


Corso base su docker 2023 (2nd Ed) - November 21-23

What is a docker registry?

A Docker registry is a storage and distribution system for named Docker images.

The same image might have multiple different versions, identified by their tags.

A Docker registry is organized into Docker repositories , where a repository holds
all the versions of a specific image.

The registry allows Docker users to pull images locally, as well as push new
images to the registry (given adequate access permissions when applicable).

By default, the Docker engine interacts with DockerHub, Docker’s public registry
instance.

14

https://hub.docker.com/


Corso base su docker 2023 (2nd Ed) - November 21-23

Private registries

Use cases for running a private registry on-premise (internal to the organization)
include:

● Distributing images inside an isolated network (not sending images over the
Internet)

● Creating faster CI/CD pipelines (pulling and pushing images from internal
network), including faster deployments to on-premise environments

● Deploying a new image over a large cluster of machines
● Tightly controlling where images are being stored

15



Corso base su docker 2023 (2nd Ed) - November 21-23

Private registries: some open-source implementations

● Docker Registry is a stateless, highly scalable server side application that stores
and lets you distribute Docker images .

● GitLab Container Registry is tightly integrated with GitLab CI’s workflow, with
minimal setup.
○ INFN SSNN provide a container registry as part of the platform baltig.infn.it based on GitLab

● Harbor (CNCF Graduated project) is an open source registry that secures artifacts
with policies and role-based access control, ensures images are scanned and free
from vulnerabilities, and signs images as trusted.
○ INFN Cloud has implemented a docker registry based on Harbor: https://harbor.cloud.infn.it/

● JFrog Container Registry supporting Docker containers and Helm Chart
repositories for Kubernetes deployments.

16

https://docs.docker.com/registry
https://docs.gitlab.com/ee/user/packages/container_registry/
https://baltig.infn.it/
https://goharbor.io/
https://harbor.cloud.infn.it/
https://jfrog.com/container-registry/


Corso base su docker 2023 (2nd Ed) - November 21-23

Docker image layers

● A Docker Image consists of read-only layers
built on top of each other.

● Docker uses the Union File System (UFS) to
build an image.

● The image is shared across containers.
● Each time Docker launches a container from

an image, it adds a thin writable layer, known
as the container layer, which stores all
changes to the container throughout its
runtime.

17



Corso base su docker 2023 (2nd Ed) - November 21-23

Docker image vs container

Each container has its own writable
container layer, and all changes are
stored in this container layer.

Multiple containers can share access to
the same underlying image and yet have
their own data state.

When the container is deleted, the
writable layer is also deleted. The
underlying image remains unchanged.

18



Corso base su docker 2023 (2nd Ed) - November 21-23

Copy-On-Write mechanism

19

COW is a standard UNIX pattern that provides a single shared copy of some data until
the data is modified.

Docker makes use of copy-on-write technology with both images and containers. This
CoW strategy optimizes both image disk space usage and the performance of
container start times. At start time, Docker only has to create the thin writable layer for
each container.

Containers that write a lot of data consume more space than containers that do not.
This is because most write operations consume new space in the container’s thin
writable top layer.

Note: for write-heavy applications, you should not store the data in the container.
Instead, use Docker volumes, which are independent of the running container and are
designed to be efficient for I/O. In addition, volumes can be shared among containers
and do not increase the size of your container’s writable layer. (Source: Docker docs)

https://docs.docker.com/storage/storagedriver/


Corso base su docker 2023 (2nd Ed) - November 21-23

Docker storage drivers

Storage drivers allow you to create data in the writable layer of your container. The files won’t be
persisted after the container is deleted, and both read and write speeds are lower than native file
system performance.
Docker supports the following storage drivers:

● overlay2 is the preferred storage driver, for all currently supported Linux distributions, and requires no extra configuration.
● fuse-overlayfs is preferred only for running Rootless Docker on a host that does not provide support for rootless overlay2. On

Ubuntu and Debian 10, the fuse-overlayfs driver does not need to be used as overlay2 works even in rootless mode.
● devicemapper is supported, but requires direct-lvm for production environments, because loopback-lvm, while zero-

configuration, has very poor performance. devicemapper was the recommended storage driver for CentOS and RHEL, as their
kernel version did not support overlay2. However, current versions of CentOS and RHEL now have support for overlay2, which is
now the recommended driver.

● The btrfs and zfs storage drivers are used if they are the backing filesystem (the filesystem of the host on which Docker is
installed). These filesystems allow for advanced options, such as creating “snapshots”, but require more maintenance and
setup. Each of these relies on the backing filesystem being configured correctly.

● The vfs storage driver is intended for testing purposes, and for situations where no copy-on-write filesystem can be used.
Performance of this storage driver is poor, and is not generally recommended for production use.

20

More info at https://docs.docker.com/storage/storagedriver/select-storage-driver/

https://docs.docker.com/storage/storagedriver/select-storage-driver/


Corso base su docker 2023 (2nd Ed) - November 21-23

Persist data with volumes

● volumes are stored in a part of the host filesystem which is managed by Docker
(/var/lib/docker/volumes/ on Linux). Non-Docker processes should not modify this part of
the filesystem. Volumes are the best way to persist data in Docker.

● bind mounts may be stored anywhere on the host system. They may even be important
system files or directories. Non-Docker processes on the Docker host or a Docker container
can modify them at any time.

● tmpfs mounts are stored in the host system’s memory only, and are never written to the host
system’s filesystem

21

Docker provides the following options for 
containers to store files in the host machine, so 
that the files are persisted even after the 
container stops
❖ volumes
❖ bind mounts
❖ tmpfs 



Corso base su docker 2023 (2nd Ed) - November 21-23

Docker networking

● bridge: the default networking driver in Docker. This can be used
when multiple containers are running in standard mode and need to
communicate with each other

● host: removes the network isolation completely. Any container
running under a host network is basically attached to the network
of the host system. Host mode networking can be useful to
optimize performance, and in situations where a container needs to
handle a large range of ports, as it does not require network
address translation (NAT), and no “userland-proxy” is created for
each port

● none: this driver disables networking for containers altogether
● overlay: this is used for connecting multiple Docker daemons

across computers
● macvlan: it allows assignment of MAC addresses to containers,

making them function like physical devices in a network
● ipvlan: similar to macvlan, the key difference being that the

endpoints have the same MAC address.

22

A network in Docker is another logical object like a container and image.

By default Docker has the following networking drivers:



Corso base su docker 2023 (2nd Ed) - November 21-23

Docker cli
$ docker help

23

https://docs.docker.com/engine/reference/commandline/cli/

https://docs.docker.com/engine/reference/commandline/cli/


Corso base su docker 2023 (2nd Ed) - November 21-23

Commands to manage docker objects

24



Corso base su docker 2023 (2nd Ed) - November 21-23

Miscellaneous commands

● docker ps: list running containers
○ -a to list also stopped containers
○ -s to show container sizes

● docker stats: display container(s) usage statistics
● docker system df: show docker disk usage
● docker system prune: remove unused data

25



Corso base su docker 2023 (2nd Ed) - November 21-23

Docker Graphical Interface
Portainer is a lightweight management UI which allows you to easily manage your different Docker environments.

The tool, which is compatible with the standalone Docker engine, Docker Swarm, Nomad and Kubernetes, is
simple to both use and deploy, being available as a Docker container itself. It can be used both on the local
machine as well as a remote Docker GUI.

Portainer allows you to manage all your Docker resources (containers, images, volumes, networks and more)

26

For more details: https://docs.portainer.io/

https://docs.portainer.io/


Corso base su docker 2023 (2nd Ed) - November 21-23

Docker alternatives

One of the drawbacks of Docker is that the Docker engine requires root privileges
to run containers.

udocker is an open source project and provides the same basic functionality the
Docker engine does but without root privileges.

It works by creating a chroot-like environment over the extracted container
and uses various implementation strategies to mimic chroot execution with
just user-level privileges. One of the execution environments you can use is
runC, the same one used by Docker.

Podman is a daemon-less, open-source, Linux-native container engine developed
by RedHat, that is used to build, run and manage Linux OCI containers and
container images. Containers can either be run as root or in rootless mode

27

https://github.com/indigo-dc/udocker
https://podman.io/


Corso base su docker 2023 (2nd Ed) - November 21-23

Docker Hands-on#1

https://infn-bari-school.github.io/docker-tutorial/

28

https://infn-bari-school.github.io/docker-tutorial/


Corso base su docker 2023 (2nd Ed) - November 21-23

References & credits

https://docs.docker.com/get-started/

https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-
know-to-start-creating-containers-8ffaf064930a

http://100daysofdevops.com/21-days-of-docker-day-21/

https://awesome-docker.netlify.app/

29

https://docs.docker.com/get-started/
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
http://100daysofdevops.com/21-days-of-docker-day-21/
https://awesome-docker.netlify.app/

