Neutrino physics at low energy

M.G. Catanesi, INFN Bari

RD_MUCOL , 13 novembre 2023

The Demonstrator will produce a large number of the \blacksquare muons/neutrinos of few hundred MeV or Less

The off-axis neutrino beam

Reduce background from π0 interactions

Neutrino xsec as a nuclear physics problem

● **CC0**π **dominant at T2K**

 \rightarrow from the detector measurement (muon+proton) to the incoming neutrino energy

● **CC1**π **(+ DIS)**

→ how to disentangle Final State Interaction effects

Impact on present and future oscillation measurements (δ_{CP} **) :** \mathbf{V}_{A} μ

Why we need good models? **Phys.Rev. D87 (2013) no.1, 013009**

Neutrino oscillation goes like ~L/E_ν but we do not measure E_ν ! We measure the outgoing muon at SuperKamiokande and we infer the neutrino energy on the base of available models

2p2h events fill the "dip" region sensitive to neutrino oscillation → **wrong modelling would cause bias on oscillation parameters**

Measuring Neutrino Interactions

- Define signal by 'topology' (final state)
- *•* Generally split by
	- \bullet *ν* flavour
	- *•* interaction mode (W*±/*Z⁰)
	- *• π*, proton multiplicity

From models to Monte Carlo

■ Various 2p2h models available → completely generic mechanism to include any **model in MC simulation: Hadron Tensors**

Lookup tables encoding the nuclear physics as a function of transferred quadrimomentum to the nucleus

$CC1\pi$

Large effects from Final State Interaction: re-scattering of the π **inside the nucleus (nuclear physics again!)**

Cross-section and FSI have different A-dependence \rightarrow important effect when extrapolation from ND and FD with different material

10/17

ν cross section measurement

The measurement of δ_{cP} crucially depends on the comparison of *ν* **vs** *ν* **oscillation** \rightarrow bias on ν vs \overline{v} cross section direct reflect in bias on δ_{CP} measurement

Future experiments: $ν_e$

 $■$ We are interested to **appeareance and** $δ_{CP}$ **from** v **–** v **comparison** but in ND we mostly measure ${\rm v}_{_\mu}$ cross-sections.

 $\sigma = \sqrt{\Delta \chi^2}$

T2K uncertainty today 5-6% \rightarrow $\rm v_e / v_{\mu}$ uncorrelated 2.5% \rightarrow v/v uncorrelated 2%

- In future (HK, DUNE) large samples of 4 \vee species \rightarrow the uncorrelated uncertainties are relevant
	- ν**e -**ν**e uncorrelated 1%** • **HK** needed uncertainty to have negligible impact on δ_{CB} :
	- For **DUNE** assumed: **uncorrelated** ν µ - ν µ **5%** and ν**^e -** ν**^e 2%**

(shape of $v_{\mu}^{}$ itself may be more important for DUNE: shape analysis and spanning over different xsec)

 $15/17/17$

What do we need to measure?

Uncertainties in ND→FD extrapolation :

• different E_{v} distribution (because of oscillation) ✔

need to reconstruct the neutrino energy from the final state particles

- ✔
	- different target $\begin{array}{c} \begin{matrix} \begin{matrix} \end{matrix} \end{matrix} \end{array}$ $\begin{array}{c} \begin{matrix} \end{matrix} \end{array}$ A-scaling: measure cross-sections on different target $\begin{matrix} \end{matrix}$ argets (and/or on the same target of FD)
- ➔
-
- different acceptance $\begin{array}{c} \begin{matrix} \begin{matrix} \end{matrix} \\ \end{matrix} \end{array}$ measurement of cross-section in the larger possible phase-space: increase angular acceptance of ND
- different neutrino flavor (because of oscillation) ν (ν) flux has typically a wrong sign component ➔
- measure cross-section asymmetries between different neutrino species (eg v vs \overline{v} important for for δ_{CP})

Why a TPC as neutrino detector at a demonstrator

- Neutrino beams from muon decays are "clean" with perfectly know characteristics \rightarrow high value of data from collected interaction data
- Target = detector
- 3D reconstruction capabilities.
- Possibility to exchange targets changing gas
- low density \rightarrow low thresholds
- excellent PID capabilities.
- Almost uniform 4π acceptance.
- low number of interactions \rightarrow requires high pressure and large volume.
- requires in addition a magnet to measure momentum and to distinguish between neutrinos and anti-neutrinos low energy protons and pions!

The flow of neutrinos at low energy produced by the demonstrator fit very well the requirements for a neutrino's X-sec experiments

A neutrino interaction in the T2K near detector

threshold of a liquid argon device

Find uniform acceptance strongly in the shold of a liquid argon device The proton KE (MeV)
Differences within models are at low KE and are below the

Number of events (example) Number of Events \mathcal{A} as a cross-section experiment, \mathcal{A}

nuclear uncertainties systematics.

• As a cross-section experiment, HP-TPC allows to change the nuclear target addressing nuclear uncertainties systematics.

Different Gas mixtures for neutrino scattering experiments different gas mixtures for neutrino scattering experiments Different gas mixtures for neutrino scattering experiments

- New ν-hydrogen scattering measurements are much desired for flux constraints and nucleon cross section (input for Oscillation Analysis) section of bubble chambers no new parties are the departure of \mathcal{L} measurements were done
- Hydrogen rich gas mixtures in a high pressure TPC could provide new data of ν-H scattering
Tak experience + MC simulations tell us the \mathbf{H} experiments are much scattering measurements ar
- TPC 95 % purity for the extraction of ν-H interactions dould be admeyed with the critic (30-30) of the critic could be admeyed with the critic (30-30) of the critic s • T2K experience + MC simulations tell us that in a HPcould be achieved with He-CH4 (50-50)or He-C2H6 (50-50) event

ucleon

igh pre

atterin

tell us

ion of a desired for flux constraints and nucleon cross section ions C2H6 neutrino beam could provide sufficient statistics to add
	- Research needed to find the ideal mixture, which still allows for safe and stable operation of a TPC new data of \mathbb{R}^n

HPTPC with optical readout (a possible "great" improvement)

per pixel possible possible possible possible possible possible possible possible possible possible.
Possible possible po

- region by an electric field \triangleright Primary ionisations in the drift region are guided to the amplification
	- \triangleright Amplification produces electrons and photons
- \triangleright Cameras image the amplification region and record a 2D projection of the electroluminescence photon
- projection of the electroluminescence photon Ø Highly segmented readout (∼ 100 × 100 μm2) at low cost per pixel μ ghly segmented readout μ possible

I Current CCD cameras do not allow to access the loon slow readout speed
 \overline{z} Current CCD cameras do not allow to access the longitudinal coordinate due to their slow readout speed

I The goal is to combine optical and charge readout: Full 3D tracking the state of the length doordinate can be $\sum_{i=1}^{n}$ information (since the longitudinal coordinate can be led $r_{\rm eff}$ range $r_{\rm eff}$ immer medicine singals The goal is to combine optical and charge readout \rightarrow Full 3D tracking information (since the longitudinal coordinate can be reconstructed from charge signals) \rightarrow (TimePix or SIPM array)

NB: optical readout is also of great interest for for the beam instrumentation case:

- 1) reduction of the budget material along the beam line
2) reached activities 2 (see as a small firsting factor 2 birk
	- 2) readout optimization \rightarrow low gas amplification factor \rightarrow high density of tracks