

Tracker R&D

N. Bartosik, M. Casarsa, L. Sestini et al. Valentina Sola, <u>Marco Ferrero et al.</u>

UFSD Group

R. Arcidiacono, G. Borghi, M. Boscardin, N. Cartiglia, M. Centis Vignali, G-F Dalla Betta, M. Ferrero, F. Ficorella, C. Hanna, L. Lanteri, L. Menzio, R. Mulargia, G. Paternoster, L. Pancheri, F. Siviero, V. Sola, R. White

PRIN: A compensated Design of Thin Silicon Sensors For Extreme Fluences - **ComonSens** PRIN: DC – RSD Developments - **4D-Share 2022KLK4LB**

Radiation levels @1.5 TeV

1-MeV-neq fluence: one year (200 days) of operation Total Ionizing Dose: one year (200 days) of operation

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)		
	R=22 mm	$R{=}1500~\mathrm{mm}$	R=22 mm	R=1500 mm	
Muon Collider	10	0.1	10^{15}	10^{14}	
HL-LHC	100	0.1	10^{15}	10^{13}	

Radiation hardness requirements are pretty similar to what expected at HL-LHC

2

Tracker layout and sensors requirements

Sensors requirements

Base	line	trac	king	geor	netry
				U	

- Higher occupancies than LHC detectors are expected, but 100 kHz crossing rate (MuC with single bunch) vs 40 MHz (LHC)
- Occupancy up to 5k hit/cm² in time window of 15ns

	vertex Detector	IIIIei Ilackei	Outer Hacker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu\mathrm{m}\times25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu{ m m} imes 5\mu{ m m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$	$7\mu{ m m} imes90\mu{ m m}$

Vortex Detector | Inner Treeker | Outer Treeker

Sinergy with timing sensors development for HL-LHC

Monolithic devices (CMOS): Good timing and spacial resolution, radiation hardness to be improved

Low Gain Avalanche Detectors (LGAD):

Large and fast signal (20-30 ps resolution), moderate radiation hardness

Hybrid small pixel devices:

Fast timing (20-30 ps resolution)and good position resolution. Intrinsically radiation hard

Marco Ferrero, INFN Torino, 13-14 Nov 2023, RD_MUCOL ITALIA

LGAD sensors towards 4D tracking AC-RSD \rightarrow and DC-RSD

DC-coupled resistive readout in silicon sensors with internal gain: signal sharing for future 4D tracking

- Project goal: evolve the resistive AC-LGAD design, improving the performance and scalability to large devices
 - \rightarrow realization of DC-RSD sensors (DC-coupled Resistive Silicon Detectors)
- Key points: achieve controlled signal sharing in a predetermined number of pads and drain the device leakage current at every pixel

Current status and outlook of the project for 2024:

- 1. Completed first round of simulations for the device, using analytic modeling, SPICE and TCAD
- 2. Working on the process flow to manufacture DC-RSD: currently completing a few *short-loops* to acquire the necessary technical skills needed for DC-RSD
- 3 The first prototype run of DC-RSD should be submitted for the end of the year
- 4. The production should be ready for extensive testing in Q2/24 (with subsequent irradiation)

PRIN: DC – RSD Developments - 4D-Share 2022KLK4LB

LGAD sensors towards 4D tracking From AC-RSD to DC-RSD

The design has been manufactured in several production by FBK, BNL and HPK

This design is presently under development by FBK The main advantages of the DC-RSD design are:

- The ability to control the signal spread and
- Monopolar signal with temporal duration of few ns, rather than bipolar with long tail

Both features are fundamental to reduce the sensor occupancy

LGAD sensors towards 4D tracking -- AC- and DC-RSD

Extensive characterization of AC-RSD in laboratory

Study of RSD2: summary of past results (TCT)

- The hit position is obtained using charge imbalance
- The resolution is defined as the difference between the laser and the reconstructed position

Spatial resolution in RSD overcomes the

limit of pitch/ $\sqrt{12}$ from binary readout

Beam test campaign on-going

FBK-RSD2, two geometries

4 electrodes, 1300 x 1300 um² 36 electrodes, 450 x 450 um²

Marco Ferrero, INFN Torino, 13-14 Nov 2023, RD_MUCOL ITALIA RD50, Cartiglia, INFN Torino.

Tivat, 21/06/2023

LGAD sensors for extreme fluences ($10^{16} - 10^{17} n_{eq}/cm^2$)

Sensori per Fluenze Estreme

Obbiettivo: Realizzare sensori sottili al silicio che operino fino a fluenze di 10¹⁷ n_{ed}/cm²

- Misurare le proprietà dei sensori al silicio a fluenze superiori a 10¹⁶ n_{eq}/cm²
- Disegnare e produrre sensori planari con guadagno in grado di operare a fluenze di 10¹⁶ 10¹⁷ n_{eq}/cm²

Produzione di sensori al silicio

- ► La prima produzione di sensori LGAD con *gain implant* p–n compensato
 - → produzione di sensori completata a fine 2022, ora in fase di caratterizzazione e irraggiamento

Extensive testing campaign on irradiated devices is ongoing

3-14 Nov 2023, RD_MUCOL ITALIA

PRIN: A compensated Design of Thin Silicon Sensors For Extreme Fluences - ComonSens

DRD3 Solid State Detector Program and Working Groups

8

Outlook for the future

 Development of a reliable sensor technology requires a couple of sensors production (2-3 years)

DC-RSD

- First DC-RSD production will be ready for the Q2/2024
- A second DC-RSD batch is scheduled for the 2025 SENSORS for EXTREME FLUENCES
- The characterization of the first batch of Compensated-LGAD is on-going
- A second production is scheduled for the end of 2024

It is reasonable to have target prototypes in 2026, after 3 years of R&D

Characterization results are an important input for realistic digitization in the physics and detector simulation

Backup

Occupancy

