

Detector design @10 TeV including MDI

Donatella Lucchesi, University and INFN of Padova, CERN for Physics and Detector - Italia

Physic processes: two colliders in one

F. Maltoni <u>"Physics Overview" Annual Meeting IMCC</u>

Multi-TeV muon collider opens a completely new regime :

(heavy particle or very boosted)

Standard Model coupling measurements Discovery light and weakly interacting particles

<u>ILCSoft</u> is the simulation and reconstruction framework, forked from CLIC's software. Transition to key4hep in progress, timeline depending on person power. <u>Tutorial made in July 2023.</u>

November 14, 2023

Survived beam-Induced background (BIB) properties

Despite the nozzles, huge number of particles arrives on the detector

Low momentum particles

Partially out of time vs beam crossing

N. Bartosik *et al* JINST **15** P05001

Beam-induced background generated with FLUKA by using the interaction region layout. Particles propagated into the detector with GEANT.

Collider

Radiation environment

1-MeV neutron equivalent fluence per year

Total ionizing dose per year

Assumptions:

- Collision energy 1.5 TeV
- Collider circumference 2.5 km
- Beam injection frequency 5Hz
- Days of operation/year 200

Radiation hardness requirements like HL-LHC (expected)

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)	
	R=22 mm	$R{=}1500~\mathrm{mm}$	R=22 mm	R=1500 mm
Muon Collider	10	0.1	10^{15}	10^{14}
HL-LHC	100	0.1	10^{15}	10^{13}

K. Black, Muon Collider Forum Report

Physics requirements: three classes of processes cont'd

 χ^{\pm} decay radius [mm]

Less conventional signatures from BSM processes, ex. Disappearing Track

MInternational MUON Collider Collaboration

Tracker design important to avoid limitation of performance

Collider interaction region requirements

Longitudinal size of the detector determined by position of final focusing magnets. At $\sqrt{s} = 10$ TeV it would be very difficult from the the lattice point of view to have more than ± 6 m

Beam background sources in the detector region

- 1) Muon decay along the ring, $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$: dominant process at all center-of-mass energies
 - * photons from synchrotron radiation of energetic electrons
 - * electromagnetic showers from electrons and photons
 - * hadronic component from photonuclear interaction with materials
 - ***** Bethe-Heitler muon, γ + *A* → *A*′ + μ ⁺ μ [−]
- 2) Incoherent e^-e^+ production, $\mu^+\mu^- \rightarrow \mu^+\mu^-e^+e^-$: important at high \sqrt{s}
 - * small transverse momentum $e^-e^+ \Rightarrow$ trapped by detector magnetic field
- 3) Beam halo: level of acceptable losses to be defined, not an issue now

- 2) Incoherent e^-e^+ production $\mu^+\mu^- \rightarrow \mu^+\mu^-e^+e^-$
 - * Study in progress by using Guinea-Pig program
 - * Incoherent e^+e^-
 - produced in time with bunch crossing at interaction point
 - very energetic
 - Study focuses on reduce the component arriving on the detector by trapping it through solenoidal field
 D. Calzolari, Magnet for 10 TeV Detector

Magnetic field needed to reduce beam-induced background

, e⁺,

Which magnetic field for the detector?

Analytic formula to relate magnetic field and track momentum resolution

Z. Drasal and W. Riegler, NIM A 910 (2018) 127

MInternationa VON Collider Collaboration

Tracking and magnetic field

Study of track efficiency with B= 5 T vs. B = 3.57 T by using $H \rightarrow b\overline{b}$ generated at $\sqrt{s} = 10$ TeV:

- inefficiency ~ 15%
- mainly due to displaced tracks

A magnetic field of about 4 T or 5 T is needed Magnet should not be a problem, but...

Collabo

Detector magnet meeting

CERN organization for Detector Magnets B. Cure

Steering committee set up at CERN in March 2023

Decision taken by AT and RC CERN Directors and Department Heads EN, EP & TE, on a cooperation between the Accelerator and the Research sector on experiments magnets.

14

Photon and jet reconstruction

central 5 TeV photon M. Casarsa

+ E_{HCal}) 0.22 0.2 / (E_{Ecal} 0.16 0.14 0.12 0.1 Fraction of 0.08 photon energy 0.06 spilling in HCAL 0.04 0.02 1000 2000 3000 4000 5000 True Energy (GeV) D. Zuliani $E_{\nu}[\text{GeV}]$ November 14, 2023

Desired ECAL :

- Deep: ~25X₀
- High granularity
- Longitudinal segmentation
- Timing ~100 ps
- CRILIN @10 TeV under study

- Deep: ~8.5λ_i
- Good forward
 coverage
- Sufficient granularity to be used in particle flow

Muon det.

Muon reconstruction

- * Need to cover a momentum range from few GeV up to TeV
 * New approach needed:
 - usual methods for low momentum;
 - combine information from muons detector, tracker and calorimeter information, jet-like structure.

Outlook

- On several occasions it has ben demonstrated that a detector at 3 TeV CoM energy is competitive with CLIC ⇒ DONE
- Beam-induced background at $\sqrt{s} = 10$ TeV ready to be processed in the detector with the nozzles of $\sqrt{s} = 1.5$ TeV. Incoherent pair production inclusion in progress.
- The requirements for a detector at 10 TeV CoM energy have been setup:
 - Magnetic field around 4-5 T
 - Study:
 - ECAL inside magnet HCAL outside
 - Both inside