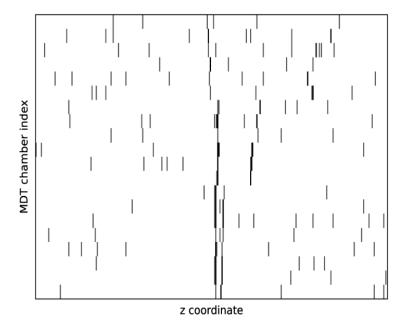
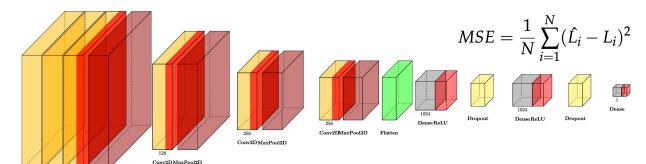

Al-assisted muon triggers for LLP with FPGA based inference

Al-assisted muon triggers for LLP

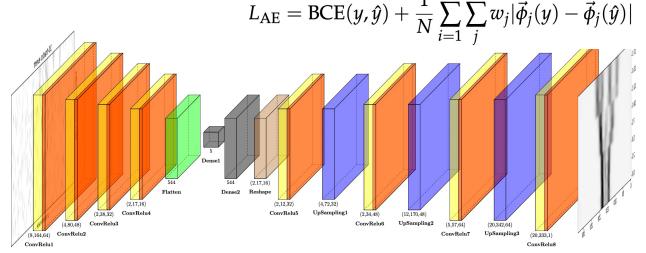

Case of study: "simplified" High Level Muon Trigger
DNN model trained to identify long-life particles (LLP) from hit
patterns released in the MDT chambers

- neutral particles decaying into multi-muons at different distances from the primary vertex of interaction, hits patterns in the spectrometer are represented as binary images
- CNN trained to predict the radial decay length (Lr) of the LLP, on events generated with a **simplified** simulation of the geometry and resolution of the ATLAS MDT detector

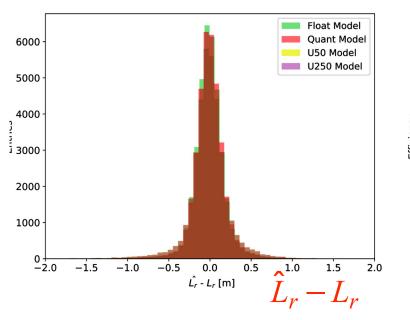
$$\pi_{V} \rightarrow b\bar{b} \rightarrow N \in [2,10]$$

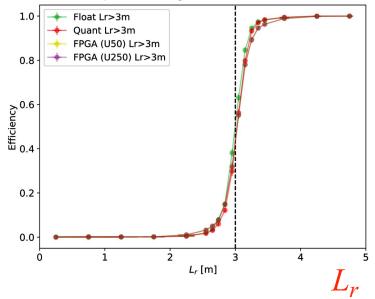

$$\gamma_d \rightarrow \mu^+ \mu^-$$

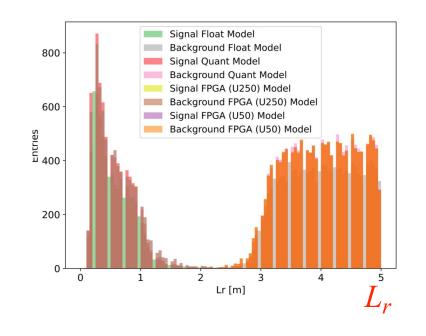
Al-assisted muon triggers for LLP


• Different types of architecture considered:

 convolutional networks (CNNs) trained in a supervised manner to predict the decay vertex of the LLP from hit patterns in the spectrometer


 convolutional auto-encoders (AE-NN) trained for anomaly detection in a partially supervised way (only "normal" events consisting of SM processes): provide a measure of how far an input event deviates from the learned representation for normal events




perceptual loss N

Al-assisted muon triggers on AMD FPGA preliminary results

Throughput [fp	ne l
Throughput [1]	/5]
Inference time	[mc]
muerence unie	[IIIIS]

Cru	Gı
269.2 ± 0.4	14
13.8 ± 3.2	10

CDII

6P0 1401.7 ± 22.6 100.8 ± 2.7

U50U250 950.3 ± 5.0 548.1 ± 4.1 3.7 ± 0.1 12.8 ± 0.3

Board Setup:

ALVEO U50 con Vitis-Al 1.4.1 (+ CPU Intel Xeon E5-2698 2.2GHz)
ALVEO U250 con Vitis-Al 2.5 (+ 2 CPU Intel Xeon Bronze 3204 1.9G)
GPU Nvidia Tesla V100.

On going performance studies

- performance study and scaling on single FPGA accelerator
 - Latency, memory/resource usage, physical performance triggers, ...
 - Neural architecture dependency: DNN vs RNN vs CNN vs GNN vs Transformers vs hybrid
 - scaling architectures with model size with threads number, parallelization layer, ...
 - memory occupation/transfer optimization: compression (pruning, weight clustering, ...)
 - quantization aware vs tuned quantization
 - dependence on different firmware/DPUs available on FPGAs (latency vs throughput optimized DPUs)
- study with FPGAs of different technologies (both from the point of view of hw and software tools):
 - AMD/Xilinx vs Intel/Altera Accelerators, VitisAl vs OpenAPI Development Environments/Libraries, vs hls4ml+HLS, vs Mipsology ZebraAl, vs ...
- study of optimal strategies for different menu triggers (physics signals):
 - DNN single task/goal vs multi-task/goal models,

Future steps

- Performance study on production hardware :
 - Test the performance (and performance/power) of the DNN inference on production DAQ CPU cluster.
- Realistic training of the DNNs
 - Conduct the training with full realistic simulation of MDT chambers events Instead of a simplified simulation.
 - Test the inference performance against the real data.
- Performance study and scaling on multi-accelerators: 1 node with 2 FPGAs, 2 nodes with 1 FPGA, 2 nodes with 2 FPGAs
 - Optimization/tuning to maximize performance on a FPGA cluster
 - detailed bottleneck study in data flow vs processing, balance between CPU / FPGA load.