
Artificial intelligence and quantum many-body
problems

Morten Hjorth-Jensen1

Department of Physics and Center for Computing in Science Education,
University of Oslo, Norway1

QFC2024- Quantum gases, fundamental interactions and
cosmology, Pisa, October 23-25, 2024

What is this talk about?

The main emphasis is to give you a short and pedestrian
introduction to the whys and hows we can use (with several
examples) machine learning methods to solve quantum mechanical
many-body problemss. And why this could (or should) be of
interest.

These slides and more at
https://github.com/mhjensenseminars/
MachineLearningTalk/tree/master/doc/pub/QFC2024

https://github.com/mhjensenseminars/MachineLearningTalk/tree/master/doc/pub/QFC2024
https://github.com/mhjensenseminars/MachineLearningTalk/tree/master/doc/pub/QFC2024

Thanks to many

Jane Kim (MSU), Julie Butler (MSU), Patrick Cook (MSU), Danny
Jammooa (MSU), Daniel Bazin (MSU), Dean Lee (MSU), Witek
Nazarewicz (MSU), Michelle Kuchera (Davidson College), Even
Nordhagen (UiO), Robert Solli (UiO, Expert Analytics), Bryce Fore
(ANL), Alessandro Lovato (ANL), Stefano Gandolfi (LANL),
Francesco Pederiva (UniTN), and Giuseppe Carleo (EPFL). Niyaz
Beysengulov and Johannes Pollanen (experiment, MSU); Zachary
Stewart, Jared Weidman, and Angela Wilson (quantum chemistry,
MSU) Jonas Flaten, Oskar, Leinonen, Øyvind Sigmundson Schøyen,
Stian Dysthe Bilek, and Håkon Emil Kristiansen (UiO). Marianne
Bathen and Lasse Vines (experiments (UiO). Excuses to those I
have omitted/forgotten.

And sponsors

1. National Science Foundation, US (various grants)
2. Department of Energy, US (various grants)
3. Research Council of Norway (various grants) and my employers

University of Oslo and Michigan State University

Perhaps I should have talked about this instead....

How to use many-body theory to design quantum circuits
(Quantum engineering)

1. Many-body methods like F(ull)C(onfiguration)I(nteraction)
theory, Coupled-Cluster theory and other with
▶ Adaptive basis sets
▶ Time dependence
▶ Optimization of experimental parameters
▶ Feedback from experiment

2. Finding optimal parameters for tuning of entanglement, see
PRX Quantum 5, 030324 (2024)

3. Numerical experiments to mimick real systems
4. Constructing quantum circuits to simulate specific systems
5. Quantum machine learning to optimize quantum circuits, see

https://arxiv.org/abs/2403.14406 and more

https://arxiv.org/abs/2403.14406

AI/ML and some statements you may have heard (and what
do they mean?)

1. Fei-Fei Li on ImageNet: map out the entire world of
objects (The data that transformed AI research)

2. Russell and Norvig in their popular textbook: relevant to any
intellectual task; it is truly a universal field (Artificial
Intelligence, A modern approach)

3. Woody Bledsoe puts it more bluntly: in the long run, AI is
the only science (quoted in Pamilla McCorduck, Machines
who think)

If you wish to have a critical read on AI/ML from a societal point
of view, see Kate Crawford’s recent text Atlas of AI.
Here: with AI/ML we intend a collection of machine learning
methods with an emphasis on statistical learning and data
analysis

https://cacm.acm.org/news/219702-the-data-that-transformed-ai-research-and-possibly-the-world/fulltext
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
https://www.pamelamccorduck.com/machines-who-think
https://www.pamelamccorduck.com/machines-who-think
https://www.katecrawford.net/

Qauntum mechanical many-body problems (nuclear example
here)

Curse of dimensionality

Neural network quantum states

Neural networks compactly represent complex
high-dimensional functions
Most quantum states of interest have distinctive features and
intrinsic structures

Machine learning. A simple perspective on the interface
between ML and Physics

ML in Nuclear Physics (or any field, almost)

Discovery
Applications

Nuclei in the Cosmos

Nuclear Theory
• Correlations and predictions
• Estimations and causations

Nuclear data
• Databases
• Data Mining
• Visualization

Experimental
Design

Artificial Intelligence
Machine Learning

Atomic Nucleus

Hadrons

Hot and Dense Nuclear
Matter

Fundamental interactions

Nuclear Experiment
• Methods
• Tools
Accelerator Science and
Operations

Types of machine learning

The approaches to machine learning are many, but are often split
into two main categories. In supervised learning we know the
answer to a problem, and let the computer deduce the logic behind
it. On the other hand, unsupervised learning is a method for finding
patterns and relationship in data sets without any prior knowledge
of the system.
An important third category is reinforcement learning. This is a
paradigm of learning inspired by behavioural psychology, where
learning is achieved by trial-and-error, solely from rewards and
punishment.

Main categories

Another way to categorize machine learning tasks is to consider the
desired output of a system. Some of the most common tasks are:
▶ Classification: Outputs are divided into two or more classes.

The goal is to produce a model that assigns inputs into one of
these classes. An example is to identify digits based on
pictures of hand-written ones. Classification is typically
supervised learning.

▶ Regression: Finding a functional relationship between an input
data set and a reference data set. The goal is to construct a
function that maps input data to continuous output values.

▶ Clustering: Data are divided into groups with certain common
traits, without knowing the different groups beforehand. It is
thus a form of unsupervised learning.

The plethora of machine learning algorithms/methods

1. Deep learning: Neural Networks (NN), Convolutional NN,
Recurrent NN, Boltzmann machines, autoencoders and
variational autoencoders and generative adversarial networks,
stable diffusion and many more generative models

2. Bayesian statistics and Bayesian Machine Learning, Bayesian
experimental design, Bayesian Regression models, Bayesian
neural networks, Gaussian processes and much more

3. Dimensionality reduction (Principal component analysis),
Clustering Methods and more

4. Ensemble Methods, Random forests, bagging and voting
methods, gradient boosting approaches

5. Linear and logistic regression, Kernel methods, support vector
machines and more

6. Reinforcement Learning; Transfer Learning and more

Example of discriminative modeling, taken from Generative
Deep Learning by David Foster

https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html

Example of generative modeling, taken from Generative
Deep Learning by David Foster

https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html

Taxonomy of generative deep learning, taken from
Generative Deep Learning by David Foster

https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html

Good books with hands-on material and codes

▶ Sebastian Rashcka et al, Machine learning with Sickit-Learn
and PyTorch

▶ David Foster, Generative Deep Learning with TensorFlow
▶ Babcock and Gavras, Generative AI with Python and

TensorFlow 2

All three books have GitHub sites from where one can download all
codes. A good and more general text (2016) is Goodfellow, Bengio
and Courville, Deep Learning

https://sebastianraschka.com/blog/2022/ml-pytorch-book.html
https://sebastianraschka.com/blog/2022/ml-pytorch-book.html
https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html
https://github.com/PacktPublishing/Hands-On-Generative-AI-with-Python-and-TensorFlow-2
https://github.com/PacktPublishing/Hands-On-Generative-AI-with-Python-and-TensorFlow-2
https://www.deeplearningbook.org/

More references

Reading on diffusion models

1. A central paper is the one by Sohl-Dickstein et al, Deep
Unsupervised Learning using Nonequilibrium Thermodynamics,
https://arxiv.org/abs/1503.03585

2. See also Diederik P. Kingma, Tim Salimans, Ben Poole,
Jonathan Ho, Variational Diffusion Models,
https://arxiv.org/abs/2107.00630

and VAEs
1. An Introduction to Variational Autoencoders, by Kingma and

Welling, see https://arxiv.org/abs/1906.02691

And two Nobel prizes this year!

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/1906.02691

What are the basic Machine Learning ingredients?

Almost every problem in ML and data science starts with the same
ingredients:
▶ The dataset x (could be some observable quantity of the

system we are studying)
▶ A model which is a function of a set of parameters α that

relates to the dataset, say a likelihood function p(x |α) or just
a simple model f (α)

▶ A so-called loss/cost/risk function C(x , f (α)) which allows
us to decide how well our model represents the dataset.

We seek to minimize the function C(x , f (α)) by finding the
parameter values which minimize C. This leads to various
minimization algorithms. It may surprise many, but at the heart of
all machine learning algortihms there is an optimization problem.

Low-level machine learning, the family of ordinary least
squares methods

Our data which we want to apply a machine learning method on,
consist of a set of inputs xT = [x0, x1, x2, . . . , xn−1] and the
outputs we want to model yT = [y0, y1, y2, . . . , yn−1]. We assume
that the output data can be represented (for a regression case) by a
continuous function f through

y = f (x) + ϵ.

Setting up the equations

In linear regression we approximate the unknown function with
another continuous function ỹ(x) which depends linearly on some
unknown parameters θT = [θ0, θ1, θ2, . . . , θp−1].
The input data can be organized in terms of a so-called design
matrix with an approximating function ỹ

ỹ = Xθ,

The objective/cost/loss function

The simplest approach is the mean squared error

C (Θ) =
1
n

n−1∑
i=0

(yi − ỹi)
2 =

1
n

{
(y − ỹ)T (y − ỹ)

}
,

or using the matrix X and in a more compact matrix-vector
notation as

C (Θ) =
1
n

{
(y − Xθ)T (y − Xθ)

}
.

This function represents one of many possible ways to define the
so-called cost function.

Training solution

Optimizing with respect to the unknown parameters θj we get

XTy = XTXθ,

and if the matrix XTX is invertible we have the optimal values

θ̂ =
(
XTX

)−1
XTy .

We say we ’learn’ the unknown parameters θ from the last equation.

Selected references

▶ Mehta et al. and Physics Reports (2019).
▶ Machine Learning and the Physical Sciences by Carleo et al
▶ Artificial Intelligence and Machine Learning in Nuclear Physics,

Amber Boehnlein et al., Reviews Modern of Physics 94,
031003 (2022)

▶ Dilute neutron star matter from neural-network quantum states
by Fore et al, Physical Review Research 5, 033062 (2023)

▶ Neural-network quantum states for ultra-cold Fermi gases,
Jane Kim et al, Commun Phys 7, 148 (2024), see
https://doi.org/10.48550/arXiv.2305.08831

▶ Particle Data Group summary on ML methods

https://arxiv.org/abs/1803.08823
https://www.sciencedirect.com/science/article/pii/S0370157319300766?via%3Dihub
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://doi.org/10.48550/arXiv.2305.08831
https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf

Scientific Machine Learning

An important and emerging field is what has been dubbed as
scientific ML, see the article by Deiana et al "Applications and
Techniques for Fast Machine Learning in Science, Big Data 5,
787421 (2022):https://doi.org/10.3389/fdata.2022.787421"

The authors discuss applications and techniques for fast machine
learning (ML) in science – the concept of integrating power ML
methods into the real-time experimental data processing loop to
accelerate scientific discovery. The report covers three main areas

1. applications for fast ML across a number of scientific domains;
2. techniques for training and implementing performant and

resource-efficient ML algorithms;
3. and computing architectures, platforms, and technologies for

deploying these algorithms.

And more

▶ An important application of AI/ML methods is to improve the
estimation of bias or uncertainty due to the introduction of or
lack of physical constraints in various theoretical models.

▶ In theory, we expect to use AI/ML algorithms and methods to
improve our knowledge about correlations of physical model
parameters in data for quantum many-body systems. Deep
learning methods show great promise in circumventing the
exploding dimensionalities encountered in quantum mechanical
many-body studies.

▶ Merging a frequentist approach (the standard path in ML
theory) with a Bayesian approach, has the potential to infer
better probabilitity distributions and error estimates.

▶ Machine Learning and Quantum Computing is a very
interesting avenue

Many-body physics, Quantum Monte Carlo and deep
learning

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of ⟨H⟩, defined through

⟨E ⟩ =
∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ ⟨E ⟩.
In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system. Basic philosophy: Let a neural network find the
optimal wave function

Quantum Monte Carlo Motivation

Basic steps
Choose a trial wave function ψT (R).

P(R,α) =
|ψT (R,α)|2∫
|ψT (R,α)|2 dR

.

This is our model, or likelihood/probability distribution function
(PDF). It depends on some variational parameters α. The
approximation to the expectation value of the Hamiltonian is now

⟨E [α]⟩ =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.

Quantum Monte Carlo Motivation

Define a new quantity

EL(R,α) =
1

ψT (R,α)
HψT (R,α),

called the local energy, which, together with our trial PDF yields

⟨E [α]⟩ =
∫

P(R)EL(R,α)dR ≈ 1
N

N∑
i=1

EL(Ri ,α)

with N being the number of Monte Carlo samples.

Energy derivatives

The local energy as function of the variational parameters defines
now our objective/cost function.
To find the derivatives of the local energy expectation value as
function of the variational parameters, we can use the chain rule
and the hermiticity of the Hamiltonian.
Let us define (with the notation ⟨E [α]⟩ = ⟨EL⟩)

Ēαi =
d⟨EL⟩
dαi

,

as the derivative of the energy with respect to the variational
parameter αi We define also the derivative of the trial function
(skipping the subindex T) as

Ψ̄i =
dΨ

dαi
.

Derivatives of the local energy

The elements of the gradient of the local energy are

Ēi = 2
(
⟨Ψ̄i

Ψ
EL⟩ − ⟨Ψ̄i

Ψ
⟩⟨EL⟩

)
.

From a computational point of view it means that you need to
compute the expectation values of

⟨Ψ̄i

Ψ
EL⟩,

and

⟨Ψ̄i

Ψ
⟩⟨EL⟩

These integrals are evaluted using MC intergration (with all its
possible error sources). Use methods like stochastic gradient or
other minimization methods to find the optimal parameters.

Why Feed Forward Neural Networks (FFNN)?

According to the Universal approximation theorem, a feed-forward
neural network with just a single hidden layer containing a finite
number of neurons can approximate a continuous multidimensional
function to arbitrary accuracy, assuming the activation function for
the hidden layer is a non-constant, bounded and
monotonically-increasing continuous function.

Universal approximation theorem

The universal approximation theorem plays a central role in deep
learning. Cybenko (1989) showed the following:

Let σ be any continuous sigmoidal function such that

σ(z) =

{
1 z → ∞
0 z → −∞

Given a continuous and deterministic function F (x) on the unit
cube in d-dimensions F ∈ [0, 1]d , x ∈ [0, 1]d and a parameter
ϵ > 0, there is a one-layer (hidden) neural network f (x ;Θ) with
Θ = (W ,b) and W ∈ Rm×n and b ∈ Rn, for which

|F (x)− f (x ;Θ)| < ϵ ∀x ∈ [0, 1]d .

https://link.springer.com/article/10.1007/BF02551274

The approximation theorem in words

Any continuous function y = F (x) supported on the unit
cube in d-dimensions can be approximated by a one-layer
sigmoidal network to arbitrary accuracy.
Hornik (1991) extended the theorem by letting any non-constant,
bounded activation function to be included using that the
expectation value

E[|F (x)|2] =
∫

x∈D
|F (x)|2p(x)dx <∞.

Then we have

E[|F (x)− f (x ;Θ)|2] =
∫

x∈D
|F (x)− f (x ;Θ)|2p(x)dx < ϵ.

https://www.sciencedirect.com/science/article/abs/pii/089360809190009T

More on the general approximation theorem

None of the proofs give any insight into the relation between the
number of of hidden layers and nodes and the approximation error
ϵ, nor the magnitudes of W and b.
Neural networks (NNs) have what we may call a kind of universality
no matter what function we want to compute.

It does not mean that an NN can be used to exactly compute any
function. Rather, we get an approximation that is as good as we
want.

Class of functions we can approximate

The class of functions that can be approximated are the continuous
ones. If the function F (x) is discontinuous, it won’t in general be
possible to approximate it. However, an NN may still give an
approximation even if we fail in some points.

Illustration of a single perceptron model and an FFNN

Figure: In a) we show a single perceptron model while in b) we dispay a
network with two hidden layers, an input layer and an output layer.

Monte Carlo methods and Neural Networks

Machine Learning and the Deuteron by Kebble and Rios and
Variational Monte Carlo calculations of A ≤ 4 nuclei with an
artificial neural-network correlator ansatz by Adams et al.
Adams et al:

HLO = −
∑
i

∇⃗2
i

2mN
+
∑
i<j

(C1 + C2 σ⃗i · σ⃗j) e−r2ij Λ
2/4

+ D0
∑

i<j<k

∑
cyc

e−(r
2
ik+r2ij)Λ

2/4 , (1)

where mN is the mass of the nucleon, σ⃗i is the Pauli matrix acting
on nucleon i , and

∑
cyc stands for the cyclic permutation of i , j ,

and k . The low-energy constants C1 and C2 are fit to the deuteron
binding energy and to the neutron-neutron scattering length

https://www.sciencedirect.com/science/article/pii/S0370269320305463?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502

Deep learning neural networks, Variational Monte Carlo
calculations of A ≤ 4 nuclei with an artificial neural-network
correlator ansatz by Adams et al.

An appealing feature of the neural network ansatz is that it is more
general than the more conventional product of two- and three-body
spin-independent Jastrow functions

|ΨJ
V ⟩ =

∏
i<j<k

(
1 −

∑
cyc

u(rij)u(rjk)
)∏

i<j

f (rij)|Φ⟩ , (2)

which is commonly used for nuclear Hamiltonians that do not
contain tensor and spin-orbit terms. The above function is replaced
by a four-layer Neural Network.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502

Ansatz for a fermionic state function, Jane Kim et al,
Commun Phys 7, 148 (2024)

ΨT (X) = expU(X)Φ(X).

1. Build in fermion antisymmetry for network compactness
2. Permutation-invariant Jastrow function improves ansatz

flexibility
3. Build U and Φ functions from fully connected, deep neural

networks
4. Use Slater determinant (or Pfaffian) Φ to enforce

antisymmetry with single particle wavefunctions represented by
neural networks

Nuclear matter setup

Neutron star structure

Dilute neutron star matter from neural-network quantum
states by Fore et al, Physical Review Research 5, 033062
(2023) at density ρ = 0.04 fm−3

https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062

Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.01 fm−3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r/rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

(a)
Singlet Fermi Gas

Triplet Fermi Gas

Singlet NQS

Triplet NQS

Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.04 fm−3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r/rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

(b)
Singlet Fermi Gas

Triplet Fermi Gas

Singlet NQS

Triplet NQS

Pairing and Spin-singlet and triplet two-body distribution
functions at ρ = 0.08 fm−3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r/rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g(
r)

(c)
Singlet Fermi Gas

Triplet Fermi Gas

Singlet NQS

Triplet NQS

Symmetric nuclear matter

Self-emerging clustering

Clustering: Two-body pair distributions

Nuclear matter proton fraction

The electron gas in three dimensions with N = 14 electrons
(Wigner-Seitz radius rs = 2 a.u.), Gabriel Pescia, Jane Kim
et al. arXiv.2305.07240,

https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240

Efficient solutions of fermionic systems using artificial neural
networks, Nordhagen et al, Frontiers in Physics 11, 2023

The Hamiltonian of the quantum dot is given by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is the many-body HO Hamiltonian, and V̂ is the
inter-electron Coulomb interactions. In dimensionless units,

V̂ =
N∑
i<j

1
rij
,

with rij =
√

r2i − r2j .
Separable Hamiltonian with the relative motion part (rij = r)

Ĥr = −∇2
r +

1
4
ω2r2 +

1
r
,

Analytical solutions in two and three dimensions (M. Taut 1993 and
1994).

https://doi.org/10.3389/fphy.2023.1061580
https://doi.org/10.3389/fphy.2023.1061580
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561

Generative models: Why Boltzmann machines?

What is known as restricted Boltzmann Machines (RMB) have
received a lot of attention lately. One of the major reasons is that
they can be stacked layer-wise to build deep neural networks that
capture complicated statistics.
The original RBMs had just one visible layer and a hidden layer, but
recently so-called Gaussian-binary RBMs have gained quite some
popularity in imaging since they are capable of modeling continuous
data that are common to natural images.
Furthermore, they have been used to solve complicated quantum
mechanical many-particle problems or classical statistical physics
problems like the Ising and Potts classes of models.

The structure of the RBM network

Hidden Layer

Visible Layer ai(vi)

bμ(hμ)

WiμvihμInteractions

The network

The network layers:
1. A function x that represents the visible layer, a vector of M

elements (nodes). This layer represents both what the RBM
might be given as training input, and what we want it to be
able to reconstruct. This might for example be the pixels of an
image, the spin values of the Ising model, or coefficients
representing speech.

2. The function h represents the hidden, or latent, layer. A
vector of N elements (nodes). Also called "feature detectors".

Goals

The goal of the hidden layer is to increase the model’s expressive
power. We encode complex interactions between visible variables by
introducing additional, hidden variables that interact with visible
degrees of freedom in a simple manner, yet still reproduce the
complex correlations between visible degrees in the data once
marginalized over (integrated out).
The network parameters, to be optimized/learned:

1. a represents the visible bias, a vector of same length as x .
2. b represents the hidden bias, a vector of same lenght as h.
3. W represents the interaction weights, a matrix of size M × N.

Joint distribution

The restricted Boltzmann machine is described by a Bolztmann
distribution

Prbm(x ,h) =
1
Z

exp−E (x ,h),

where Z is the normalization constant or partition function, defined
as

Z =

∫ ∫
exp−E (x ,h)dxdh.

Note the absence of the inverse temperature in these equations.

Network Elements, the energy function

The function E (x ,h) gives the energy of a configuration (pair of
vectors) (x ,h). The lower the energy of a configuration, the higher
the probability of it. This function also depends on the parameters
a, b and W . Thus, when we adjust them during the learning
procedure, we are adjusting the energy function to best fit our
problem.

Defining different types of RBMs (Energy based models)

There are different variants of RBMs, and the differences lie in the
types of visible and hidden units we choose as well as in the
implementation of the energy function E (x ,h). The connection
between the nodes in the two layers is given by the weights wij .

Binary-Binary RBM:
RBMs were first developed using binary units in both the visible
and hidden layer. The corresponding energy function is defined as
follows:

E (x ,h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑
i ,j

xiwijhj ,

where the binary values taken on by the nodes are most commonly
0 and 1.

Gaussian binary

Gaussian-Binary RBM:
Another varient is the RBM where the visible units are Gaussian
while the hidden units remain binary:

E (x ,h) =
M∑
i

(xi − ai)
2

2σ2
i

−
N∑
j

bjhj −
M,N∑
i ,j

xiwijhj
σ2
i

.

Representing the wave function

The wavefunction should be a probability amplitude depending on
x . The RBM model is given by the joint distribution of x and h

Prbm(x ,h) =
1
Z

exp−E (x ,h).

To find the marginal distribution of x we set:

Prbm(x) =
1
Z

∑
h

exp−E (x ,h).

Now this is what we use to represent the wave function, calling it a
neural-network quantum state (NQS)

|Ψ(X)|2 = Prbm(x).

Define the cost function

Now we don’t necessarily have training data (unless we generate it
by using some other method). However, what we do have is the
variational principle which allows us to obtain the ground state
wave function by minimizing the expectation value of the energy of
a trial wavefunction (corresponding to the untrained NQS).
Similarly to the traditional variational Monte Carlo method then, it
is the local energy we wish to minimize. The gradient to use for the
stochastic gradient descent procedure is

Ci =
∂⟨EL⟩
∂θi

= 2(⟨EL
1
Ψ

∂Ψ

∂θi
⟩ − ⟨EL⟩⟨

1
Ψ

∂Ψ

∂θi
⟩),

where the local energy is given by

EL =
1
Ψ

ĤΨ.

Quantum dots and Boltzmann machines, onebody densities
N = 6, ℏω = 0.1 a.u.

Onebody densities N = 30, ℏω = 1.0 a.u.

Expectation values as functions of the oscillator frequency

0 2 4 6 8 10

0

0.2

0.4

0.6

ω

E
i/
E

⟨T̂ ⟩/E
⟨V̂ext⟩/E
⟨V̂int⟩/E

Observations (or conclusions if you prefer)

▶ Need for AI/Machine Learning in physics, lots of ongoing
activities

▶ To solve many complex problems and facilitate discoveries,
multidisciplinary efforts efforts are required involving scientists
in physics, statistics, computational science, applied math and
other fields.

▶ There is a need for focused AI/ML learning efforts that will
benefit accelerator science and experimental and theoretical
programs

More observations

▶ How do we develop insights, competences, knowledge in
statistical learning that can advance a given field?
▶ For example: Can we use ML to find out which correlations are

relevant and thereby diminish the dimensionality problem in
standard many-body theories?

▶ Can we use AI/ML in detector analysis, experimental design,
analysis of experimental data and more?

▶ Can we use AL/ML to carry out reliable extrapolations by
using current experimental knowledge and current theoretical
models?

▶ The community needs to invest in relevant educational efforts
and training of scientists with knowledge in AI/ML. These are
great challenges to the CS and DS communities

▶ Quantum computing and quantum machine learning not
discussed here

▶ Most likely tons of things I have forgotten

Possible start to raise awareness about ML in our own field

▶ Make an ML challenge in your own field a la Learning to
discover: the Higgs boson machine learning challenge.
Alternatively go to kaggle.com at
https://www.kaggle.com/c/higgs-boson

▶ HEP@CERN and HEP in general have made significant
impacts in the field of machine learning and AI. Something to
learn from

https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://www.kaggle.com/c/higgs-boson

Our network example, simple percepetron with one input

As as simple example we define now a simple perceptron model
with all quantities given by scalars. We consider only one input
variable x and one target value y . We define an activation function
σ1 which takes as input

z1 = w1x + b1,

where w1 is the weight and b1 is the bias. These are the
parameters we want to optimize. This output is then fed into the
cost/loss function, which we here for the sake of simplicity just
define as the squared error

C (x ;w1, b1) =
1
2
(a1 − y)2.

Optimizing the parameters
In setting up the feed forward and back propagation parts of the
algorithm, we need now the derivative of the various variables we
want to train.
We need

∂C

∂w1
and

∂C

∂b1
.

Using the chain rule we find

∂C

∂w1
=
∂C

∂a1

∂a1

∂z1

∂z1
∂w1

= (a1 − y)σ′1x ,

and
∂C

∂b1
=
∂C

∂a1

∂a1

∂z1

∂z1
∂b1

= (a1 − y)σ′1,

which we later will just define as

∂C

∂a1

∂a1

∂z1
= δ1.

Implementing the simple perceptron model
In the example code here we implement the above equations (with
explict expressions for the derivatives) with just one input variable x
and one output variable. The target value y = 2x + 1 is a simple
linear function in x . Since this is a regression problem, we define
the cost function to be proportional to the least squares error

C (y ,w1, b1) =
1
2
(a1 − y)2,

with a1 the output from the network.
import necessary packages
import numpy as np
import matplotlib.pyplot as plt

def feed_forward(x):
weighted sum of inputs to the output layer
z_1 = x*output_weights + output_bias
Output from output node (one node only)
Here the output is equal to the input
a_1 = z_1
return a_1

def backpropagation(x, y):
a_1 = feed_forward(x)
derivative of cost function
derivative_cost = a_1 - y
the variable delta in the equations, note that output a_1 = z_1, its derivatives wrt z_o is thus 1
delta_1 = derivative_cost
gradients for the output layer
output_weights_gradient = delta_1*x
output_bias_gradient = delta_1
The cost function is 0.5*(a_1-y)^2. This gives a measure of the error for each iteration
return output_weights_gradient, output_bias_gradient

ensure the same random numbers appear every time
np.random.seed(0)
Input variable
x = 4.0
Target values
y = 2*x+1.0

Defining the neural network
n_inputs = 1
n_outputs = 1
Initialize the network
weights and bias in the output layer
output_weights = np.random.randn()
output_bias = np.random.randn()

implementing a simple gradient descent approach with fixed learning rate
eta = 0.01
for i in range(40):

calculate gradients from back propagation
derivative_w1, derivative_b1 = backpropagation(x, y)
update weights and biases
output_weights -= eta * derivative_w1
output_bias -= eta * derivative_b1

our final prediction after training
ytilde = output_weights*x+output_bias
print(0.5*((ytilde-y)**2))

Running this code gives us an acceptable results after some 40-50
iterations. Note that the results depend on the value of the learning
rate.

Central magic

Automatic differentiation

https://en.wikipedia.org/wiki/Automatic_differentiation

Essential elements of generative models

The aim of generative methods is to train a probability distribution
p. Popular methods are:

1. Energy based models, with the family of Boltzmann
distributions as a typical example

2. Variational autoencoders
3. Generative adversarial networks (GANs) and
4. Diffusion models

Energy models

We define a domain X of stochastic variables
X = {x0, x1, . . . , xn−1} with a pertinent probability distribution

p(X) =
∏
xi∈X

p(xi),

where we have assumed that the random varaibles xi are all
independent and identically distributed (iid).
We will now assume that we can defined this function in terms of
optimization parameters Θ, which could be the biases and weights
of a deep network, and a set of hidden variables we also assume to
be random variables which also are iid. The domain of these
variables is H = {h0, h1, . . . , hm−1}.

Probability model

We define a probability

p(xi , hj ;Θ) =
f (xi , hj ;Θ)

Z (Θ)
,

where f (xi , hj ;Θ) is a function which we assume is larger or equal
than zero and obeys all properties required for a probability
distribution and Z (Θ) is a normalization constant. Inspired by
statistical mechanics, we call it often for the partition function. It is
defined as (assuming that we have discrete probability distributions)

Z (Θ) =
∑
xi∈X

∑
hj∈H

f (xi , hj ;Θ).

Marginal and conditional probabilities

We can in turn define the marginal probabilities

p(xi ;Θ) =

∑
hj∈H f (xi , hj ;Θ)

Z (Θ)
,

and

p(hi ;Θ) =

∑
xi∈X f (xi , hj ;Θ)

Z (Θ)
.

Change of notation
Note the change to a vector notation. A variable like x
represents now a specific configuration. We can generate an
infinity of such configurations. The final partition function is then
the sum over all such possible configurations, that is

Z (Θ) =
∑
xi∈X

∑
hj∈H

f (xi , hj ;Θ),

changes to
Z (Θ) =

∑
x

∑
h

f (x ,h;Θ).

If we have a binary set of variable xi and hj and M values of xi and
N values of hj we have in total 2M and 2N possible x and h
configurations, respectively.
We see that even for the modest binary case, we can easily
approach a number of configuration which is not possible to deal
with.

Optimization problem

At the end, we are not interested in the probabilities of the hidden
variables. The probability we thus want to optimize is

p(X ;Θ) =
∏
xi∈X

p(xi ;Θ) =
∏
xi∈X

(∑
hj∈H f (xi , hj ;Θ)

Z (Θ)

)
,

which we rewrite as

p(X ;Θ) =
1

Z (Θ)

∏
xi∈X

∑
hj∈H

f (xi , hj ;Θ)

 .

Further simplifications

We simplify further by rewriting it as

p(X ;Θ) =
1

Z (Θ)

∏
xi∈X

f (xi ;Θ),

where we used p(xi ;Θ) =
∑

hj∈H f (xi , hj ;Θ). The optimization
problem is then

arg max
Θ∈Rp

p(X ;Θ).

Optimizing the logarithm instead

Computing the derivatives with respect to the parameters Θ is
easier (and equivalent) with taking the logarithm of the probability.
We will thus optimize

arg max
Θ∈Rp

log p(X ;Θ),

which leads to
∇Θ log p(X ;Θ) = 0.

Expression for the gradients

This leads to the following equation

∇Θ log p(X ;Θ) = ∇Θ

∑
xi∈X

log f (xi ;Θ)

−∇Θ logZ (Θ) = 0.

The first term is called the positive phase and we assume that we
have a model for the function f from which we can sample values.
Below we will develop an explicit model for this. The second term
is called the negative phase and is the one which leads to more
difficulties.

The derivative of the partition function

The partition function, defined above as

Z (Θ) =
∑
xi∈X

∑
hj∈H

f (xi , hj ;Θ),

is in general the most problematic term. In principle both x and h
can span large degrees of freedom, if not even infinitely many ones,
and computing the partition function itself is often not desirable or
even feasible. The above derivative of the partition function can
however be written in terms of an expectation value which is in
turn evaluated using Monte Carlo sampling and the theory of
Markov chains, popularly shortened to MCMC (or just MC2).

Explicit expression for the derivative

We can rewrite
∇Θ logZ (Θ) =

∇ΘZ (Θ)

Z (Θ)
,

which reads in more detail

∇Θ logZ (Θ) =
∇Θ

∑
xi∈X f (xi ;Θ)

Z (Θ)
.

We can rewrite the function f (we have assumed that is larger or
equal than zero) as f = exp log f . We can then reqrite the last
equation as

∇Θ logZ (Θ) =

∑
xi∈X ∇Θ exp log f (xi ;Θ)

Z (Θ)
.

Final expression
Taking the derivative gives us

∇Θ logZ (Θ) =

∑
xi∈X f (xi ;Θ)∇Θ log f (xi ;Θ)

Z (Θ)
,

which is the expectation value of log f

∇Θ logZ (Θ) =
∑
xi∈X

p(xi ;Θ)∇Θ log f (xi ;Θ),

that is
∇Θ logZ (Θ) = E(log f (xi ;Θ)).

This quantity is evaluated using Monte Carlo sampling, with Gibbs
sampling as the standard sampling rule. Before we discuss the
explicit algorithms, we need to remind ourselves about Markov
chains and sampling rules like the Metropolis-Hastings algorithm
and Gibbs sampling.

Introducing the energy model
As we will see below, a typical Boltzmann machines employs a
probability distribution

p(x ,h;Θ) =
f (x ,h;Θ)

Z (Θ)
,

where f (x ,h;Θ) is given by a so-called energy model. If we
assume that the random variables xi and hj take binary values only,
for example xi , hj = {0, 1}, we have a so-called binary-binary model
where

f (x ,h;Θ) = −E (x ,h;Θ) =
∑
xi∈X

xiai+
∑
hj∈H

bjhj+
∑

xi∈X ,hj∈H

xiwijhj ,

where the set of parameters are given by the biases and weights
Θ = {a,b,W }. Note the vector notation instead of xi and hj
for f . The vectors x and h represent a specific instance of
stochastic variables xi and hj . These arrangements of x and h lead
to a specific energy configuration.

More compact notation

With the above definition we can write the probability as

p(x ,h;Θ) =
exp (aTx + bTh + xTWh)

Z (Θ)
,

where the biases a and h and the weights defined by the matrix W
are the parameters we need to optimize.

Binary-binary model

Since the binary-binary energy model is linear in the parameters ai ,
bj and wij , it is easy to see that the derivatives with respect to the
various optimization parameters yield expressions used in the
evaluation of gradients like

∂E (x ,h;Θ)

∂wij
= −xihj ,

and
∂E (x ,h;Θ)

∂ai
= −xi ,

and
∂E (x ,h;Θ)

∂bj
= −hj .

