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GWs through the perturbea Universe

Probe of large scale structures and compact objects

Propagation effects carry cosmological and astrophysical information
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Optical regimes

High Frequency: wRg¢ > 1 Low Frequency @wRg S 1

Ray description Wave effects

. Gao et al. (2102.10295): ~(0.1 - 1.6)% of MBHB with (10° — 10°°)M_ and 4 < z < 10

o LISA CosGW (2204.05434): WO need to be considered for typical LISA sources 319



‘alk’'s plan

e Geometric optics (GO)
o Standard formalism of Wave optics (WO): diffraction integral

o Our work: proper time path integral

Fikonal & Paraxial

Spinless waves
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Geometric optics

Isaacson ‘68

=~

Gravitational wave

~— Background
with curvature radius L
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(Geometric optics

Isaacson ‘68

. L
1. GO ansatz for GW: h,, = & (X) e where w = n > ]

Gravitational wave

2. Organize linearized Einstein Egs. in powers of w:

~— Background
with curvature radius L

o[ . ]+iw[...]+][...]1=0

o kp = ()pé’

Vp(gzizkp) =0 ——» Amplitude continuity equation

There is a unique direction of
propagation, and the trajectory is a null
geodesic

KV =0 ——

° g/’”/kﬂky —_ O
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Refractive index & dispersion relation

« From GO: trajectories are null geodesics of background spacetime
ds? = — (1 +2a UX)dt* + (1 = 2 a U(X))dx>

e Null condition = dispersion relation :
UV —_
gk .k, = 0
k’ = w*(1 — 2aU)* = w*n* —> Refractive index

e Geodesic equation = Fermat principle :

5 ( /O : dl’n(x(l’))) — 0
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Quantum mechanics

w = /pe'S

h

~— Background
with curvature radius L

Isaacson ‘68

/}, =\
N\
N \\\\

Continuity eq. with Continuity eqg. with

e GO is like classical limit
e Analogy between WO and QM

o Uncertainty principle: existence of trajectories
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GOAL: find a Schrodinger equation



f—

DIl

fraction integra

for a scalar wave

Nakamura&Deguchi 1999

ds? = — (1 +2aUX)dt* + (1 — 2 a U(x))dx>



| )

Nakamura&Deguchi 1999

1. Klein-Gordon Eq. For scalar wave: >
V? +w?(1 —4al)] W, (x)=0

[raction integral for a scalar wave

2. Amplifica}ionfuctor: @~ é(‘)) ........................ rLO
F(x) _ \Pw/\PgL k) .................... s %:} a U(x)

3. Eikonal & Paraxial:
0?F| < |2iwd,.F| sin@ ~ 0

4. Schrodinger Eq.: Diffraction integral:

. 1 o [r? -
0 _ -

Analogy between wave and quantum effects:
interference between all paths.
Geometric optics = classical limit
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D1

[raction integral: Pros and Cons

1. Eikonal: frequency lower bound

1. Wave optics effects are frequency dependent D > \G%F\/\@FF\

2. E high f limi : . L
asy high frequency limit - 2. Scalar field: no polarization effects

3. Already used for: lens parameter estimation,
constraints PBH abundance, matter PS at
small scales,...

25
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Proper time path integrals

15

‘ 2405.20208

Citation per year of

Nakamura&Deguchi 1999 0

2003 2008 2013 2018 2023
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Particles:

Flelds vs .

Croper time technigue

PROBLEM:

In order to have a direct transition to the GO description in terms of trajectories in the

limit @ — 00, want a path ir

tegral description QM-style, i.e. over all paths.

However, GWs are relativistic fields and QFT path integrals are over field
configurations. Can we achieve this without Eikonal&Paraxial?

Dh eia)Sf[

172%

Fikonal&Paraxial

Proper time technique

o A.K.A: worldline quantization, Schwinger proper time, energy propagator, Feynman/Fradkin...

o Already used in: QFT, QED, optics, acoustic waves, many-body, guantum cosmology...
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Proper time path integral in Cosmo

Finding a Schrodinger equation without Eikonal approximation

1. Green function approach: [VZ 4 w?(1 — 4aU)| Gu(xy,x;) = 6 (x5 — x;)

2. Propertime: Gy (xf,%x;) = Z}/ dTGinéw(Xf,Xi,T)
0
3. Schrodinger Eq.: L 96, — : V26, + 4aU(x)G
® 0t w2 v v

w=1/h Particle action

\ 7

. . 00 | x(7'=T)=xy oy T w2
PI‘OPEI‘ time Gw(xfa xi) __ _1/ dr ezw'r/ DX(T,) ezw fo dr [T—4aU]
path integral: w Jo x(7/=0)=x; \l/

Sum over paths
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Exact particle-like solution WITHOUT Eikonal/Paraxial approximation



What you can find in 2405.20208:

1. @ — oo limit to recover geometric optics

(OW/ot = 0 and OW/6x = 0)

2. Eikonal assumption a posteriori to recover diffraction integral of Nakamura&Deguchi 1999
(OW/ot = 0)

3. Perturbative expansion in aU and Dyson equations

4. First order solution for Coulomb-like potential

2

5. Massive scalar field: o, = a)\/l ~

2

6. Polarization effects 1419



Recovering geometric optics: @ — o0

i + 00 X(T’=T)=Xf | | .
G, =— —J dTJ Dx(7)) e@Wxx.l Total phase: W[x,x,7] =1 [ d7'L[x(7)), xX(7"), 7’]
@ Jo X(1'=0)=x, 0
Variations w.r.t. proper time Variations w.r.t. coordinates
oW R
—_fA=0 oW _
0T 5X
« Enforces particle-like dispersion relation . Fermat principle of geometric optics
H=—p’+n? z
cl
) dl’ !/ =0
e Changing variables to arc length, we have (/o (x( )))

Lei Lei
W = /0 dl’'\/1 — 4aU (x(I')) = /0 dl'n(x(l")) 15/19



Removing the proper time

. Want to remove proper time integration to have direct representation of G, with only JDX(T’)

 In high frequency limit, one can expand 7 around its “classical” value: OW/ot = 0

(T — Tcl)z 5°W

Wix, x, 7] = WX, X, 7,/] Wix, x, 7] = W[Xx, X, 7] +
2 57«-2 Tcl
X(£'=C,)=X X(C'=C )=X; ol n[X(£)]
G =N J Dx(¢") ¢'@nx@) G, =N J Dx(Z")
N xX(£'=0)=x; x(¢£'=0)=x; \/ 52W/ot? ‘T 1

Using Paraxial approximation (sin 6 =~ 0) Fevnman-Garrod nropaaator
this becomes diffraction integral 4 PIOPAS 16/19



Polarization effects on a Kerr backarouna

S. Teukolsky (1973

1. Lens = Kerr BH

2. Use BH perturbation theory long-standing
results

3. Perturbations of spins =0, 1/2, 1,2 on Kerr BH
satisfy Teukolsky Eq.:

O[M, a,w, sy, (r,0,p) =

Differential Newman-Penrose scalar, e.g.:
operator Wi=s D {h +ih <}
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Polarization effects on

Helmholtz Eqg. for radial part

1. Decompose NP scalar: v, = e~ S(0) R(r)
2. Radial part satisfies 1D Klein-Gordon equation:

d’R - - 1 =
T Fw? |1 —4U; (w,r)| R

|
-

3. Same starting point, solve again with PTPI

4. In Newtonian limit:

~ M (l+1)+s(s+1

a Kerr background

U, (w,r) ~ —4— 4

Same as
diffraction integral

r \{/wZTZ

Angular momentum
(decomposition)

Spin dependent terms:

Negligible in w > 1
limit
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Summar

1. PTPI: wave-optics description without eikonal approximation (no frequency lower bound)

2. For BH lenses: include polarization effect

What's next

1. Numerical investigation: lens parameter estimation, constraints PBH abundance, matter
PS at small scales... do they change with PTPI instead of Diffraction integral?

2. Other backgrounds

3. Many waves, many lenses

Thankyou! ..
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Optical regimes

High Frequency: wR¢ > 1 Low Frequency: wR¢ S 1

Ray description | | Wave effects

. Gao et al. (2102.10295): ~(0.1 - 1.6)% of MBHB with (10° — 10°°)M_ and 4 < z < 10

e LISA CosGW (2204.05434): WO need to be considered for typical LISA sources 22/19



3. Perturbative expansion

By assuming wa < 1, we expand the potential term in the action and set up a perturbative
expansion as in QFT/QM

(Feynman 1965)

2

00 . " 5 5 ]
Gu(xf,%;) = —5/0 dr e |GWY) (xf,%i,T) — W Gc(ul)(xf,xi,T) — % Gg)(xf,xz-,T) + ..

N x(7'=T)=xy .

G&O) (xf,%;,T) = / Dx(7") et
x(7'=0)=x;

X(7'=T)=xy

é((ul)(Xf,Xi,T) E/ Dx(7") eiwso/ dr'V (x(1")),
0

x(7/=0)=x; V(X) — 4OZU(X
N x(17'=T)=xy . - PT T 7
GO (x;,%;,7) = / Dx (1) €0 / dnv(x(n)) [ drV(x())

x(7'=0)=x; L/ 0 0 .

Sum over all path of the free particle action weighted by powers of the potential V(x(7"))
23/19



3. Born approximation and Dvson Eg.

o Potential has a role only at the point of the path at the time of scattering:

GS) (Xf,xi,T) = / d’Tl / (E}O)(Xf,xjf, T — Tl)fdo)(XY,Xi, 7_1)
0 — 00

Sum over all scattering centers Localized scattering

. Generalize to n* order Green function: Gg‘) represented by free propagation
in between n scattering events

Last scattering

i

X0
éw(Xf,Xz‘,T) — é&o)(xf,xi,'r) — iw/ drrg éc(do) (Xf,XLS, T — TLs)w(XLs,XZ',TLs) ‘

« Dyson equation with V(X) as self-energy - 2419



like potentials

Gu(X0,Xg5) = G((UO) (x0,Xg5) — z'wGS)(xo, Xg) R~

~~/
~/

1 ew(ro+rs) [
- 1+ 4z‘
4T ro+rs |

¥

1 —iw(rs +ro)

rsrol@s — 0o |?w?

Effects goes to zero for 4,,, > Ry
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Proper time path intearal in Cosmoloc

|

- 00 | x(7'=T)=xy e T2
Guo(xf,X;) = —1/0 dr e"’w'r/ Dx(7') e Jo 47 % —4aU]

W x(17/=0)=x;

e Physical interpretation:

The probability for the wave to propagate from X; to XfiS given as the probability of the

associated particle to propagate from from X; to X/ in a fictitious time 7, integrated over all
possible values of this parameter.

e« Hamiltonian point of view:

. +00 ~ 0

B rh H=— 1 —4aU

Ga)(Xf, Xi) = <Xf‘ [Vz + 602(1 — 4aU)] 1‘Xi> — i[ drt <Xf‘ €la)TH‘Xi> p ‘|‘( o )
@ Jo p=iw 'V

Dispersion relation plays the role of Hamiltonian 26/19



-lelds vs Particles: Proper time technique

e Also known as: worldline quantization, Schwinger proper time, energy propagator,
Feynman/Fradkin...

e Already used in: QFT, QED, optics, acoustic wave propagation, many-body, quantum cosmology...
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